scholarly journals 3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 211
Author(s):  
Rebeca Leu Leu Alexa ◽  
Raluca Ianchis ◽  
Diana Savu ◽  
Mihaela Temelie ◽  
Bogdan Trica ◽  
...  

Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy.

RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 29335-29345 ◽  
Author(s):  
KyoungHo Lee ◽  
Cho-Rong Seo ◽  
Jin-Mo Ku ◽  
Hyeongjin Lee ◽  
Hyeon Yoon ◽  
...  

A new composite scaffold consisting of poly(ε-caprolactone), alginate, and phenamil was manufactured by a combined process, 3D-printing and coating process, for hard tissue regeneration.


Author(s):  
Jan Miroslav Hartinger ◽  
Peter Lukáč ◽  
Petr Mitáš ◽  
Mikuláš Mlček ◽  
Michaela Popková ◽  
...  

The study presents a novel vancomycin-releasing collagen wound dressing derived from Cyprinus carpio collagen type I cross-linked with carbodiimide which retarded the degradation rate and increased the stability of the sponge. Following lyophilization, the dressings were subjected to gamma sterilization. The structure was evaluated via scanning electron microscopy images, micro-computed tomography, and infrared spectrometry. The structural stability and vancomycin release properties were evaluated in a phosphate buffer solution. Microbiological testing and a rat model of a wound infected with methicillin-resistant Staphylococcus aureus (MRSA) were then employed to test the efficacy of the treatment of the infected wound. Following an initial mass loss due to the release of vancomycin, the sponges remained stable. After 7 days of exposure in phosphate buffered saline (37°C), 60% of the material remained with a preserved collagen secondary structure together with a high degree of open porosity (over 80%). The analysis of the release of the vancomycin revealed the homogeneous distribution of the antibiotic both across and between the sponges. The release of vancomycin was retarded as proved by in vitro testing and further confirmed by the animal model from which measurable concentrations were observed in blood samples 24 hours after the subcutaneous implantation of the sponge, which was more than observed following i. p. administration. The sponge was also highly effective in terms of reducing the number of colony-forming units in biopsies extracted from the infected wounds 4 days following the inoculation of the wounds with the MRSA solution.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1718 ◽  
Author(s):  
Hao Yang Zhang ◽  
Heng Bo Jiang ◽  
Jeong-Hyun Ryu ◽  
Hyojin Kang ◽  
Kwang-Mahn Kim ◽  
...  

The aim of this study was to fabricate bioresorbable polylactide (PLA) membranes by 3D printing and compare their properties to those of the membranes fabricated by the conventional method and compare the effect of different pore sizes on the properties of the 3D-printed membranes. PLA membranes with three different pore sizes (large pore-479 μm, small pore-273 μm, and no pore) were 3D printed, and membranes fabricated using the conventional solvent casting method were used as the control group. Scanning electron microscopy (SEM) and micro-computed tomography (µ-CT) were taken to observe the morphology and obtain the porosity of the four groups. A tensile test was performed to compare the tensile strength, elastic modulus, and elongation at break of the membranes. Preosteoblast cells were cultured on the membranes for 1, 3 and 7 days, followed by a WST assay and SEM, to examine the cell proliferation on different groups. As a result, the 3D-printed membranes showed superior mechanical properties to those of the solvent cast membranes, and the 3D-printed membranes exhibited different advantageous mechanical properties depending on the different pore sizes. The various fabrication methods and pore sizes did not have significantly different effects on cell growth. It is proven that 3D printing is a promising method for the fabrication of customized barrier membranes used in GBR/GTR.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1788
Author(s):  
Gustavo González ◽  
Désirée Baruffaldi ◽  
Cinzia Martinengo ◽  
Angelo Angelini ◽  
Annalisa Chiappone ◽  
...  

Light-based 3D printing techniques could be a valuable instrument in the development of customized and affordable biomedical devices, basically for high precision and high flexibility in terms of materials of these technologies. However, more studies related to the biocompatibility of the printed objects are required to expand the use of these techniques in the health sector. In this work, 3D printed polymeric parts are produced in lab conditions using a commercial Digital Light Processing (DLP) 3D printer and then successfully tested to fabricate components suitable for biological studies. For this purpose, different 3D printable formulations based on commercially available resins are compared. The biocompatibility of the 3D printed objects toward A549 cell line is investigated by adjusting the composition of the resins and optimizing post-printing protocols; those include washing in common solvents and UV post-curing treatments for removing unreacted and cytotoxic products. It is noteworthy that not only the selection of suitable materials but also the development of an adequate post-printing protocol is necessary for the development of biocompatible devices.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1804
Author(s):  
Agnese Piovesan ◽  
Valérie Vancauwenberghe ◽  
Wondwosen Aregawi ◽  
Mulugeta A. Delele ◽  
Evi Bongaers ◽  
...  

Additive manufacturing or 3D printing can be applied in the food sector to create food products with personalized properties such as shape, texture, and composition. In this article, we introduce a computer aided engineering (CAE) methodology to design 3D printed food products with tunable mechanical properties. The focus was on the Young modulus as a proxy of texture. Finite element modelling was used to establish the relationship between the Young modulus of 3D printed cookies with a honeycomb structure and their structure parameters. Wall thickness, cell size, and overall porosity were found to influence the Young modulus of the cookies and were, therefore, identified as tunable design parameters. Next, in experimental tests, it was observed that geometry deformations arose during and after 3D printing, affecting cookie structure and texture. The 3D printed cookie porosity was found to be lower than the designed one, strongly influencing the Young modulus. After identifying the changes in porosity through X-ray micro-computed tomography, a good match was observed between computational and experimental Young’s modulus values. These results showed that changes in the geometry have to be quantified and considered to obtain a reliable prediction of the Young modulus of the 3D printed cookies.


Gigabyte ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Anton du Plessis ◽  
Johan Els ◽  
Stephan le Roux ◽  
Muofhe Tshibalanganda ◽  
Toni Pretorius

Museums are embracing new technologies and one of these is the use of 3D printing. 3D printing allows for creating physical replicas of items which may, due to great value or significance, not be handled by the public, or which are too small or fragile to be handled or even seen with the naked eye. One such application of new technologies has been welcomed by the National Museum in Bloemfontein, Free State, South Africa. Here, blown-up (enlarged) Museum specimens were 3D printed for various interactive exhibits that are aimed at increasing the accessibility of their permanent displays for visually impaired visitors who rely greatly on touch as a source of observation. A selection of scorpions, pseudoscorpions, mites and archetypal bird skulls were scanned, processed and 3D printed to produce enlarged, highly functional nylon models. This data paper provides the raw micro Computed Tomography (micro-CT) scan data and print ready STL files processed from this data. The STL files may be used in their current format and details of the printing are provided.


2020 ◽  
Author(s):  
Anton du Plessis ◽  
Johan Els ◽  
Stephan le Roux ◽  
Muofhe Tshibalanganda ◽  
Toni Pretorius

Museums are embracing new technologies and one of these is the use of 3D printing. 3D printing allows for creating physical replicas of items which may, due to great value or significance, not be handled by the public, or which are too small or fragile to be handled or even seen with the naked eye. One such application of new technologies has been welcomed by the National Museum in Bloemfontein, Free Sate, South Africa. Here, blown-up (enlarged) Museum specimens were 3D printed for various interactive exhibits that are aimed at increasing the accessibility of their permanent displays for visually impaired visitors who rely greatly on touch as a source of observation. A selection of scorpions, pseudoscorpions, mites and archetypal bird skulls were scanned, processed and 3D printed to produce enlarged, highly functional nylon models. This data paper provides the raw micro Computed Tomography (micro-CT) scan data and print ready STL files processed from this data. The STL files may be used in their current format and details of the printing are provided.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document