scholarly journals Overexpression of CpWRKY75 from Chimonanthus praecox Promotes Flowering Time in Transgenic Arabidopsis

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Renwei Huang ◽  
Shunzhao Sui ◽  
Huamin Liu ◽  
Mingyang Li ◽  
Daofeng Liu

WRKY transcription factors play critical roles in the physiological processes of plants. Although the roles of WRKYs have been characterized in some model plants, their roles in woody plants, especially wintersweet (Chimonanthus praecox), are largely unclear. In this study, a wintersweet WRKY gene named CpWRKY75 belonging to group IIc was isolated and its characteristics were identified. CpWRKY75 is a nucleus-localized protein, and exhibited no transcriptional activation activity in yeast. CpWRKY75 was highly expressed in flowers at different bloom stages. Ectopic expression of CpWRKY75 significantly promoted the flowering time of transgenic Arabidopsis (Arabidopsis thaliana), as determined by the rosette leaf number and first flower open time. The expression levels of flowering-related genes were quantified by qRT-PCR, and the results suggested that CpWRKY75 had obvious influence on the expression level of MICRORNA156C (MIR156C), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9), FLOWERING LOCUS T (FT), LEAFY (LFY), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), APETALA1 (AP1), CAULIFLOWER (CAL), and FRUITFULL (FUL). These results suggest that CpWRKY75 might have a flowering time regulation function, and additionally provide a new gene resource for the genetic engineering of woody flowering plants.

1996 ◽  
Vol 16 (6) ◽  
pp. 3206-3213 ◽  
Author(s):  
S M Roberts ◽  
F Winston

Mutations selected as suppressors of Ty and solo delta insertion mutations is Saccharomyces cerevisiae have identified a number of genes important for transcription initiation. One of these gens, SPT15, encodes the TATA-binding protein, and three others, SPT3, SPT7, and SPT8, encode proteins functionally related to the TATA-binding protein. To identify additional related functions, we have selected for new spt mutations. This work has identified one new gene, SPT20. Null mutations in SPT20 cause poor growth and a set of severe transcriptional defects very similar to those caused by null mutations in SPT3, SPT7, and SPT8 and also very similar to those caused by certain missense mutations in SPT15. Consistent with its having an important function in transcription in vivo, SPT20 was also recently identified as ADA5 and has been shown to be important for transcriptional activation (G.A. Marcus, J. Horiuchi, N. Silverman, and L. Guarente, Mol. Cell. Biol. 16:3197-3205, 1996.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 342 ◽  
Author(s):  
Jinsong Xiong ◽  
Yibo Bai ◽  
Chuangju Ma ◽  
Hongyu Zhu ◽  
Dan Zheng ◽  
...  

SQUAMOSA-promoter binding protein-like (SPL) proteins are plant-specific transcript factors that play essential roles in plant growth and development. Although many SPL genes have been well characterized in model plants like Arabidopsis, rice and tomato, the functions of SPLs in strawberry are still largely elusive. In the present study, we cloned and characterized FvSPL10, the ortholog of AtSPL9, from woodland strawberry. Subcellular localization shows FvSPL10 localizes in the cell nucleus. The luciferase system assay indicates FvSPL10 is a transcriptional activator, and both in vitro and in vivo assays indicate FvSPL10 could bind to the promoter of FvAP1 and activate its expression. Ectopic expression of FvSPL10 in Arabidopsis promotes early flowering and increases organs size. These results demonstrate the multiple regulatory roles of FvSPL10 in plant growth and development and lay a foundation for investigating the biological functions of FvSPL10 in strawberry.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lin Ma ◽  
Xiqiang Liu ◽  
Wenhui Liu ◽  
Hongyu Wen ◽  
Yongchao Zhang ◽  
...  

SQUAMOSA Promoter-binding protein-Like (SPL) genes affect a broad range of plant biological processes and show potential application in crop improvement by genetic modification. As the most widely planted forage crop in the world, biomass and abiotic stresses tolerance are important breeding targets for alfalfa (Medicago sativa L.). Nevertheless, the systematic analysis of SPL genes in alfalfa genome remains lacking. In the present study, we characterized 22 putative non-redundant SPL genes in alfalfa genome and uncovered the abundant structural variation among MsSPL genes. The phylogenetic analysis of plant SPL proteins separated them into 10 clades and clade J was an alfalfa-specific clade, suggesting SPL genes in alfalfa might have experienced gene duplication and functional differentiation within the genome. Meanwhile, 11 MsSPL genes with perfect matches to miRNA response elements (MREs) could be degraded by miR156, and the cleavage sites were gene specific. In addition, we investigated the temporal and spatial expression patterns of MsSPL genes and their expression patterns in response to multiple treatments, characterizing candidate SPL genes in alfalfa development and abiotic stress tolerant regulation. More importantly, overexpression of the alfalfa-specific SPL gene (MsSPL20) showed stable delayed flowering time, as well as increased biomass. Further studies indicated that MsSPL20 delayed flowering time by regulating the expression of genes involved in floret development, including HD3A, FTIP1, TEM1, and HST1. Together, our findings provide valuable information for future research and utilization of SPL genes in alfalfa and elucidate a possibly alfalfa-specific flowering time regulation, thereby supplying candidate genes for alfalfa molecular-assisted breeding.


2020 ◽  
Vol 21 (3) ◽  
pp. 1123 ◽  
Author(s):  
Qi Li ◽  
Haixia Zhao ◽  
Xiaoli Wang ◽  
Jingyue Kang ◽  
Bingbing Lv ◽  
...  

bZIP transcription factors have been reported to be involved in many different biological processes in plants. The ABA (abscisic acid)-dependent AREB/ABF-SnRK2 pathway has been shown to play a key role in the response to osmotic stress in model plants. In this study, a novel bZIP gene, FtbZIP5, was isolated from tartary buckwheat, and its role in the response to drought and salt stress was characterized by transgenic Arabidopsis. We found that FtbZIP5 has transcriptional activation activity, which is located in the nucleus and specifically binds to ABRE elements. It can be induced by exposure to PEG6000, salt and ABA in tartary buckwheat. The ectopic expression of FtbZIP5 reduced the sensitivity of transgenic plants to drought and high salt levels and reduced the oxidative damage in plants by regulating the antioxidant system at a physiological level. In addition, we found that, under drought and salt stress, the expression levels of several ABA-dependent stress response genes (RD29A, RD29B, RAB18, RD26, RD20 and COR15) in the transgenic plants increased significantly compared with their expression levels in the wild type plants. Ectopic expression of FtbZIP5 in Arabidopsis can partially complement the function of the ABA-insensitive mutant abi5-1 (abscisic acid-insensitive 5-1). Moreover, we screened FtSnRK2.6, which might phosphorylate FtbZIP5, in a yeast two-hybrid experiment. Taken together, these results suggest that FtbZIP5, as a positive regulator, mediates plant tolerance to salt and drought through ABA-dependent signaling pathways.


2018 ◽  
Author(s):  
Ryan Kessens ◽  
Nicholas Sorensen ◽  
Mehdi Kabbage

AbstractDespite the functional conservation of programmed cell death (PCD) across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. This is despite its critical importance to development, homeostasis, and proper responses to stress. Progress in plant PCD has been hindered by the fact that many core regulators of animal PCD are absent in plant genomes. Remarkably, numerous studies have shown that the ectopic expression of animal anti-PCD genes in plants can suppress cell death imposed by many stresses. In this study, we capitalize on the ectopic expression of an insect inhibitor of apoptosis (SfIAP) to identify novel cell death regulators in plants. A yeast two-hybrid assay was conducted using SfIAP as bait to screen a tomato cDNA library. This screen identified several transcription factors of the SQUAMOSA promoter binding protein (SBP) family as potential SfIAP binding partners. We confirmed this interaction in vivo for our top two interactors, SlySBP8b and SlySBP12a, using coimmunoprecipitation. Interestingly, overexpression of SlySBP8b and SlySBP12a induced spontaneous cell death in Nicotiana benthamiana leaves. Overexpression of these two transcription factors also induced the accumulation of reactive oxygen species and enhanced the growth of the necrotrophic pathogen Alternaria alternata. Fluorescence microscopy confirmed the nuclear localization of both SlySBP8b and SlySBP12a, while SlySBP12a was also localized to the ER membrane. These results support a pro-death role for SlySBP8b and SlySBP12a and provide potential targets that can be utilized to improve stress tolerance in crop plants.HighlightsSBP transcription factors SlySBP8b and SlySBP12a from tomato interact with an insect inhibitor of apoptosis protein (SfIAP). Both exhibit pro-cell death characteristics while SlySBP12a activity may be regulated through ER membrane tethering.AbbreviationsPCDprogrammed cell deathIAPinhibitor of apoptosisBIRbaculovirus IAP repeatRINGreally interesting new geneFB1fumonisin B1SBPSQUAMOSA promoter binding proteinROSreactive oxygen species35Scauliflower mosaic virus 35S promoterHAhemagglutininYFPyellow fluorescent proteinDAB3,3’-DiaminobenzidineQIS-Seqquantitative interactor screen sequencingCLSMconfocal laser scanning microscopyDHEdihydroethidiumNLSnuclear localization signalTMDtransmembrane domainERendoplasmic reticulumHRhypersensitive responseMTTFmembrane-tethered transcription factor


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 413
Author(s):  
Qing Guo ◽  
Li Li ◽  
Kai Zhao ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
...  

SQUAMOSA promoter binding protein (SBP) is a kind of plant-specific transcription factor, which plays a crucial role in stress responses and plant growth and development by activating and inhibiting the transcription of multiple target genes. In this study, a total of 30 SBP genes were identified from Populus trichocarpa genome and randomly distributed on 16 chromosomes in poplar. According to phylogenetic analysis, the PtSBPs can be divided into six categories, and 14 out of the genes belong to VI. Furthermore, the SBP genes in VI were proved to have a targeting relationship with miR156. The homeopathic element analysis showed that the promoters of poplar SBP genes mainly contain the elements involved in growth and development, abiotic stress and hormone response. In addition, there existed 10 gene segment duplication events in the SBP gene duplication analysis. Furthermore, there were four poplar and Arabidopsis orthologous gene pairs among the poplar SBP members. What is more, poplar SBP gene family has diverse gene expression pattern under salt stress. As many as nine SBP members were responding to high salt stress and six members possibly participated in growth development and abiotic stress. Yeast two-hybrid experiments indicated that PtSBPs can form heterodimers to interact in the transcriptional regulatory networks. The genome-wide analysis of poplar SBP family will contribute to function characterization of SBP genes in woody plants.


FEBS Letters ◽  
2001 ◽  
Vol 489 (2-3) ◽  
pp. 187-191 ◽  
Author(s):  
You-Fang Li ◽  
Frédéric Dubois ◽  
Dao-Xiu Zhou

FEBS Letters ◽  
1999 ◽  
Vol 463 (3) ◽  
pp. 307-311 ◽  
Author(s):  
Takashi Sato ◽  
M.Cecilia Lopez ◽  
Shigemi Sugioka ◽  
Yoshifumi Jigami ◽  
Henry V. Baker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document