scholarly journals Operational Estimation of Landslide Runout: Comparison of Empirical and Numerical Methods

Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 424 ◽  
Author(s):  
Marc Peruzzetto ◽  
Anne Mangeney ◽  
Gilles Grandjean ◽  
Clara Levy ◽  
Yannick Thiery ◽  
...  

A key point of landslide hazard assessment is the estimation of their runout. Empirical relations linking angle of reach to volume can be used relatively easily, but they are generally associated with large uncertainties as they do not consider the topographic specificity of a given study site. On the contrary, numerical simulations provide more detailed results on the deposits morphology, but their rheological parameters can be difficult to constrain. Simulating all possible values can be time consuming and incompatible with operational requirements of rapid estimations. We propose and compare three operational methods to derive scaling power laws relating the landslide travel distance to the destabilized volume. The first one relies only on empirical relations, the second one on numerical simulations with back-analysis, and the third one combines both approaches. Their efficiency is tested on three case studies: the Samperre cliff collapses in Martinique, Lesser Antilles (0.5 to 4×106 m3), the Frank Slide rock avalanche (36×106 m3) and the Samperre cliff collapses in Martinique, Lesser Antilles (0.5 to 4×106 m3) the Fei Tsui debris slide in Hong Kong (0.014×106 m3). Purely numerical estimations yield the smallest uncertainty, but the uncertainty on rheological parameters is difficult to quantify. Combining numerical and empirical approaches allows to reduce the uncertainty of estimation by up to 50%, in comparison to purely empirical estimations. However, it may also induces a bias in the estimation, though observations always lie in the 95% prediction intervals. We also show that empirical estimations fail to model properly the dependence between volume and travel distance, particularly for small landslides (<20,000 <0.02×106 m3).

2021 ◽  
Author(s):  
Marc Peruzzetto ◽  
Clara Levy ◽  
Yannick Thiery ◽  
Gilles Grandjean ◽  
Anne Mangeney ◽  
...  

&lt;p&gt;This work focuses on the use of thin-layer models for simulating fast gravitational flows for hazard assessment. Such simulations are sometimes difficult to carry out because of the uncertainty on initial conditions and on simulation parameters. In this study, we aggregate various field data to constrain realistic initial conditions and to calibrate the model parameters. By using the SHALTOP numerical code, we choose a simple and empirical rheology to model the flow (no more than two parameters), but we model more finely the geometrical interactions between the flow and the topography. We can thus model both a rock avalanche, and the subsequent remobilization of the deposits as a high discharge debris flow.&lt;/p&gt;&lt;p&gt;Using the Pr&amp;#234;cheur river catchment (Martinique, Lesser Antilles) as a case study, we focus on extreme events with a high potential to impact populations and infrastructures. We use geological and geomorphological data, topographic surveys, seismic recordings and granulometric analysis to define realistic simulation scenarios and determine the main characteristics of documented events. The latter are then reproduced to calibrate rheological parameters. With a single rheological parameter and the Coulomb rheology, we thus model the emplacement and main dynamic characteristics of a recent rock avalanche, as well as the travel duration and flooded area of a documented high discharge debris flow. Then, in a forward prediction simulation, we model a possible 1.9x10&lt;sup&gt;6 &lt;/sup&gt;m&lt;sup&gt;3&lt;/sup&gt; rock avalanche, and the instantaneous remobilization of the resulting deposits as a high-discharge debris flow. We show that successive collapses allow to better reproduce the dynamics of the rock avalanche, but do not change the geometry of the final deposits, and thus do not influence the initial conditions of the subsequent debris flow simulation. A progressive remobilization of the materials slows down the debris flow and limits overflow, in comparison to instantaneous release. However, we show that high discharge debris flows, such as the one considered for model calibration, are better reproduced with an instantaneous initiation. The range of travel times measured for other significant debris flows in the Pr\^echeur river is consistent with our simulation results, with various rheological parameters and the Coulomb or Voellmy rheology.&lt;/p&gt;


2012 ◽  
Vol 131-132 ◽  
pp. 45-56 ◽  
Author(s):  
F. Bozzano ◽  
S. Martino ◽  
A. Montagna ◽  
A. Prestininzi

2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2014 ◽  
Vol 44 (5) ◽  
pp. 1285-1305 ◽  
Author(s):  
T. Radko ◽  
J. D. Flanagan ◽  
S. Stellmach ◽  
M.-L. Timmermans

Abstract This study explores the dynamics of thermohaline staircases: well-defined stepped structures in temperature and salinity profiles, commonly observed in regions of active double diffusion. The evolution of staircases in time is frequently characterized by spontaneous layer-merging events. These phenomena, the authors argue, are essential in regulating the equilibrium layer thickness in fully developed staircases. The pattern and mechanics of merging events are explained using a combination of analytical considerations, direct numerical simulations, and data analysis. The theoretical merger model is based on the stability analysis for a series of identical steps and pertains to both forms of double diffusion: diffusive convection and salt fingering. The conceptual significance of the proposed model lies in its ability to describe merging events without assuming from the outset specific power laws for the vertical transport of heat and salt—the approach adopted by earlier merging models. The analysis of direct numerical simulations indicates that merging models based on the four-thirds flux laws offer adequate qualitative description of the evolutionary patterns but are less accurate than models that do not rely on such laws. Specific examples considered in this paper include the evolution of layers in the diffusive staircase in the Beaufort Gyre of the Arctic Ocean.


1991 ◽  
Vol 28 (2) ◽  
pp. 226-238 ◽  
Author(s):  
F. Pelli ◽  
P. K. Kaiser ◽  
N. R. Morgenstern

Convergence, radial displacements, and stress changes are often recorded during the advance of a tunnel for the observational tunnel design approach. In deep tunnels, instruments must be installed from underground and can seldom be placed in undisturbed ground. Consequently, observations are only partial records of the total change induced by an excavation and the influence of the three-dimensional state near the face must be considered. This paper presents results from numerical simulations to assess face effects on monitoring data. The influence of such aspects as in situ state of stress, anisotropy, nonlinearity, and plasticity (yielding ground) are evaluated. Guidelines for underground monitoring of deformations are given. Key words: tunnelling, monitoring, back-analysis, convergence, extensometers, numerical modelling.


2018 ◽  
Vol 18 (2) ◽  
pp. 555-570 ◽  
Author(s):  
Raquel Melo ◽  
Theo van Asch ◽  
José L. Zêzere

Abstract. Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economic damage, although no lives were lost. The present research aims to simulate the run-out of two debris flows that occurred during the event as well as to calculate via back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. Afterwards, the model was validated using 32 debris flows triggered during the same event that were not considered for calibration. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flow run-out on the basin scale. The results were confronted with the existing buildings exposed in the study area and the worst-case scenario showed a potential inundation that may affect 345 buildings. In addition, six streams where debris flow occurred in the past and caused material damage and loss of lives were identified.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1391
Author(s):  
Tingting Guo ◽  
Zhiwei Zhang ◽  
Zhiquan Yang ◽  
Yingyan Zhu ◽  
Yi Yang ◽  
...  

The time-dependent behavior of power-law fluid has a significant influence on the grouting effects of reinforcing loose gravel soil. In this paper, based on basic rheological equations and the time-dependent behavior of rheological parameters (consistency coefficient and rheological index), rheological equations and penetration equations of time-dependent power-law fluid are proposed. Its penetration grouting diffusion mechanism for reinforcing loose gravel soil was then theoretically induced. A set of indoor experimental devices for simulating penetration grouting was designed to simulate the penetration grouting of power-law fluid with different time-dependent behaviors for reinforcing loose gravel soil. Then, relying on the COMSOL Multiphysics platform and Darcy’s law, three-dimensional numerical calculation programs for this mechanism were obtained using secondary-development programming technology. Thus, the numerical simulations of the penetration grouting process of power-law fluid with different time-dependent behaviors for reinforcing loose gravel soil were carried out. This theoretical mechanism was validated by comparing results from theoretical analyses, indoor experiments, and numerical simulations. Research results show that the three-dimensional numerical calculation programs can successfully simulate the penetration diffusion patterns of a time-dependent power-law fluid in loose gravel soil. The theoretical calculation values and numerical simulation values of the diffusion radius obtained from this mechanism are closer to indoor experimental values than those obtained from the penetration grouting diffusion theory of power-law fluid without considering time-dependent behavior. This mechanism can better reflect the penetration grouting diffusion laws of a power-law fluid in loose gravel soil than the theory, which can provide theoretical support and guidance for practical grouting construction.


2010 ◽  
Vol 10 (5) ◽  
pp. 1009-1019 ◽  
Author(s):  
M. Pirulli

Abstract. In the present paper the problem of modeling the propagation of potential debris flows is tackled resorting to a numerical approach. In particular, numerical analyses are carried out with the RASH3D code, based on a single-phase depth-averaged continuum mechanics approach. Since each numerical analysis requires the selection of a rheology and the setting of the rheological input parameters, a calibration-based approach, where the rheological parameters are constrained by systematic adjustment during trial-and-error back-analysis of full-scale events, has been assumed. The back-analysis of a 1000 m3 debris flow, located at Tate's Cairn, Hong Kong, and the forward-analysis of a 10 000 m3 potential debris flow, located in the same basin have been used to investigate the transferability of back-calculated rheological parameters from one case to another. Three different rheologies have been tested: Frictional, Voellmy and Quadratic. From obtained results it emerges that 1) the back-calculation of a past event with different rheologies can help in selecting the rheology that better reproduces the runout of the analysed event and, on the basis of that selection, can give some indication about the dynamics of the investigated flow, 2) the use of back-calculated parameters for forward purposes requires that past and potential events have similar characteristics, some of which are a function of the assumed rheology. Among tested rheologies, it is observed that the Quadratic rheology is more influenced by volume size than Frictional and Voellmy rheologies and consequently its application requires that events are also similar in volume.


Sign in / Sign up

Export Citation Format

Share Document