scholarly journals Regulation of Macrophage Activation and Polarization by HCC-Derived Exosomal lncRNA TUC339

2018 ◽  
Vol 19 (10) ◽  
pp. 2958 ◽  
Author(s):  
Xue Li ◽  
Yi Lei ◽  
Miao Wu ◽  
Nan Li

Exosomes released by cells can serve as vehicles for delivery of biological materials and signals. Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nt, which roles are increasingly appreciated in various biological content. Tumor-derived exosomal lncRNAs have been implicated as signaling mediators to orchestrate cell function among neighbor tumor cells. However, the role of tumor-derived lncRNAs in cross-talk with environmental macrophages has yet to be explored. In this paper, we demonstrated that hepatocellular carcinoma (HCC) cells–derived exosomes contain elevated levels of lncRNA TUC339 and that HCC-derived exosomes could be taken up by THP-1 cells. In seeking to dissect the biological function of tumor secreting TUC339 in macrophages, we applied loss-of-function and gain-of-function strategies. We observed increased pro-inflammatory cytokine production, increased co-stimulatory molecule expression, and enhanced phagocytosis upon suppression of TUC339 by siRNA in THP-1 cells, and the opposite effect upon over-expression of this lncRNA, which indicates that TUC339 was involved in the regulation of macrophage activation. Moreover, we detected an elevated level of TUC339 in M(IL-4) macrophages as compared to M(IFN-γ + LPS) macrophages and a down-regulation of TUC339 expression during M(IL-4)-to-M(IFN-γ + LPS) repolarization and vice versa. Furthermore, suppression of TUC339 in macrophages diminished the expression of M(IL-4) markers upon IL-4 treatment while overexpression of TUC339 in macrophages enhanced M(IL-4) markers upon IFN-γ + LPS treatment, which suggests a critical function of TUC339 in the regulation of macrophage M1/M2 polarization. Lastly, using microarray analysis, we identified cytokine-cytokine receptor interaction, CXCR chemokine receptor binding, Toll-like receptor signaling, FcγR-mediated phagocytosis, regulation of the actin cytoskeleton, and cell proliferation are related with TUC339 function in macrophages. Our results provide evidence for a novel regulatory function of tumor-derived exosomal lncRNA TUC339 in environmental macrophages and shed light on the complicated interactions between tumor and immune cells through exosomal lncRNAs.

2018 ◽  
Vol 4 (4) ◽  
pp. 41 ◽  
Author(s):  
Wilson K. M. Wong ◽  
Anja E. Sørensen ◽  
Mugdha V. Joglekar ◽  
Anand A. Hardikar ◽  
Louise T. Dalgaard

In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and β-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and β-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and β-cell differentiation as well as in the perinatal period, where a burst of β-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and β-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or β-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with β-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and β-cell function. Altogether, these observations support significant and important actions of ncRNAs in β-cell development and function.


Reproduction ◽  
2013 ◽  
Vol 145 (4) ◽  
pp. 421-437 ◽  
Author(s):  
Pouneh Maraghechi ◽  
László Hiripi ◽  
Gábor Tóth ◽  
Babett Bontovics ◽  
Zsuzsanna Bősze ◽  
...  

MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple biological processes. Increasing experimental evidence implies an important regulatory role of miRNAs during embryonic development and in embryonic stem (ES) cell biology. In the current study, we have described and analyzed the expression profile of pluripotency-associated miRNAs in rabbit embryos and ES-like cells. The rabbit specific ocu-miR-302 and ocu-miR-290 clusters, and three homologs of the human C19MC cluster (ocu-miR-512, ocu-miR-520e, and ocu-miR-498) were identified in rabbit preimplantation embryos and ES-like cells. The ocu-miR-302 cluster was highly similar to its human homolog, while ocu-miR-290 revealed a low level of evolutionary conservation with its mouse homologous cluster. The expression of the ocu-miR-302 cluster began at the 3.5 days post-coitum early blastocyst stage and they stayed highly expressed in rabbit ES-like cells. In contrast, a high expression level of the ocu-miR-290 cluster was detected during preimplantation embryonic development, but a low level of expression was found in rabbit ES-like cells. Differential expression of the ocu-miR-302 cluster and ocu-miR-512 miRNA was detected in rabbit trophoblast and embryoblast. We also found that Lefty has two potential target sites in its 3′UTR for ocu-miR-302a and its expression level increased upon ocu-miR-302a inhibition. We suggest that the expression of the ocu-miR-302 cluster is characteristic of the rabbit ES-like cell, while the ocu-miR-290 cluster may play a crucial role during early embryonic development. This study presents the first identification, to our knowledge, of pluripotency-associated miRNAs in rabbit preimplantation embryos and ES-like cells, which can open up new avenues to investigate the regulatory function of ocu-miRNAs in embryonic development and stem cell biology.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4801-4801 ◽  
Author(s):  
Parvin Forghani ◽  
Wayne Harris ◽  
jian-Ming Li ◽  
M.R. Khorramizadeh ◽  
Edmund Waller

Abstract Abstract 4801 MDSC have been described as an important negative regulators of autologous anti-cancer immune responses. Considering the important role of MDSC in immune regulation in allogenic stem cell and organ transplantation, we undertook an investigation of the mechanism(s) by which MDSC inhibit T–cell activation and proliferation, and tested the hypothesis that local cytokine secretion or IDO activity is required for suppression of T-cell proliferation. Two separate populations CD11bhiGr-1hi and CD11bhi Gr-1int were isolated by high-speed FACS from lineage- BM antigen presenting cells (C57 & BALB/c mice). Both MDSC subsets had potent capacity for in–vitro suppression of CD4+ and CD8+ T cells proliferation in response to anti-CD3/anti-CD28 beads and Con A. A ratio of 0.5/1 MDSC: T-cells were sufficient to inhibit >66% control levels of T-cell proliferation. MDSC isolated from transgenic mice that had been “knocked-out” for IFN-γ and IDO had equivalent suppressive activity as MDSC from wild-type donors. Addition of saturating concentrations of anti IL-10 and IL-4 MAb, or in combination with anti- IFN-γ MAb did not abrogate MDSC-suppressive activity. Ex-vivo culture of MDSC with mitogen-activated T-cells generated two—fold more Fox-p3 T-reg compared with cultures of T cell plus mitogen. Data will be presented regarding the novel role of MDSC involving in the homeostasis regulation of normal T-cell activation and proliferation in non-tumor-bearing mice. Disclosures: No relevant conflicts of interest to declare.


Endocrinology ◽  
2021 ◽  
Vol 162 (4) ◽  
Author(s):  
Siwen Wu ◽  
Lixiu Lv ◽  
Linxi Li ◽  
Lingling Wang ◽  
Baiping Mao ◽  
...  

Abstract Throughout spermatogenesis, cellular cargoes including haploid spermatids are required to be transported across the seminiferous epithelium, either toward the microtubule (MT) plus (+) end near the basement membrane at stage V, or to the MT minus (−) end near the tubule lumen at stages VI to VIII of the epithelial cycle. Furthermore, preleptotene spermatocytes, differentiated from type B spermatogonia, are transported across the Sertoli cell blood-testis barrier (BTB) to enter the adluminal compartment. Few studies, however, have been conducted to explore the function of MT-dependent motor proteins to support spermatid transport during spermiogenesis. Herein, we examined the role of MT-dependent and microtubule plus (+) end–directed motor protein kinesin 15 (KIF15) in the testis. KIF15 displayed a stage-specific expression across the seminiferous epithelium, associated with MTs, and appeared as aggregates on the MT tracks that aligned perpendicular to the basement membrane and laid across the entire epithelium. KIF15 also tightly associated with apical ectoplasmic specialization, displaying strict stage-specific distribution, apparently to support spermatid transport across the epithelium. We used a loss-of-function approach by RNAi to examine the role of KIF15 in Sertoli cell epithelium in vitro to examine its role in cytoskeletal-dependent Sertoli cell function. It was noted that KIF15 knockdown by RNAi that reduced KIF15 expression by ~70% in Sertoli cells with an established functional tight junction barrier impeded the barrier function. This effect was mediated through remarkable changes in the cytoskeletal organization of MTs, but also actin-, vimentin-, and septin-based cytoskeletons, illustrating that KIF15 exerts its regulatory effects well beyond microtubules.


2020 ◽  
Vol 21 (14) ◽  
pp. 5148
Author(s):  
Rawnaq Esa ◽  
Eliana Steinberg ◽  
Dvir Dror ◽  
Ouri Schwob ◽  
Mehrdad Khajavi ◽  
...  

During the metastasis process, tumor cells invade the blood circulatory system directly from venous capillaries or indirectly via lymphatic vessels. Understanding the relative contribution of each pathway and identifying the molecular targets that affect both processes is critical for reducing cancer spread. Methionine aminopeptidase 2 (MetAp2) is an intracellular enzyme known to modulate angiogenesis. In this study, we investigated the additional role of MetAp2 in lymphangiogenesis. A histological staining of tumors from human breast-cancer donors was performed in order to detect the level and the localization of MetAp2 and lymphatic capillaries. The basal enzymatic level and activity in vascular and lymphatic endothelial cells were compared, followed by loss of function studies determining the role of MetAp2 in lymphangiogenesis in vitro and in vivo. The results from the histological analyses of the tumor tissues revealed a high MetAp2 expression, with detectable sites of co-localization with lymphatic capillaries. We showed slightly reduced levels of the MetAp2 enzyme and MetAp2 mRNA expression and activity in primary lymphatic cells when compared to the vascular endothelial cells. The genetic and biochemical manipulation of MetAp2 confirmed the dual activity of the enzyme in both vascular and lymphatic remodulation in cell function assays and in a zebrafish model. We found that cancer-related lymphangiogenesis is inhibited in murine models following MetAp2 inhibition treatment. Taken together, our study provides an indication that MetAp2 is a significant contributor to lymphangiogenesis and carries a dual role in both vascular and lymphatic capillary formation. Our data suggests that MetAp2 inhibitors can be effectively used as anti-metastatic broad-spectrum drugs.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Koji Uchiyama ◽  
Hisashi Kishi ◽  
Wataru Komatsu ◽  
Masanori Nagao ◽  
Shuji Ohhira ◽  
...  

Crohn’s disease is one of the systemic autoimmune diseases. It commonly affects the small intestine and colon but may involve any portion of the gastrointestinal tract from the mouth to the anus. The most affected area by Crohn’s disease is the distal part of the small intestine, in which the bile acid molecules are most efficiently reabsorbed. Bile acids form mixed micelles together with fatty acids, which function as a transport vehicle to deliver fatty acids to the apical membrane of enterocytes for absorption. Therefore, if the terminal ileum is impaired, bile acid malabsorption may occur, which may cause congenital diarrhoea in Crohn’s disease. Similarly, the impairment of the terminal ileum also induces fatty acid malabsorption, which may influence the role of fatty acids in Crohn’s disease. In contrast, a recent study reported that multidrug resistance protein 1 (MDR1) regulated effector T-cell function in the ileum from bile acid-driven oxidative stress and MDR1 loss of function in a subset of patients with Crohn’s disease. However, the role of consumption of fatty acids in Crohn’s disease remains to be fully elucidated. This review is aimed at providing an overview of some recent developments in research of Crohn’s disease from comprehensive perspective with a focus on the connection between disease location and behaviour, lipid diets, and bile acid malabsorption.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Juan Wang ◽  
Yong-Chun Shen ◽  
Zhen-Ni Chen ◽  
Zhi-Cheng Yuan ◽  
Hao Wang ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) are involved in various biological processes as well as many respiratory diseases, while the role of lncRNAs in acute lung injury (ALI) remains unclear. The present study aimed to profile the expression of lung lncRNAs and mRNAs in lipopolysaccharide (LPS)-induced ALI mouse model. C57BL/6 mice were exposed to LPS or phosphate-buffered saline for 24 h, and lncRNAs and mRNAs were profiled by Arraystar mouse LncRNA Array V3.0. Bioinformatics analysis gene ontology including (GO) and pathway analysis and cell study in vitro was used to investigate potential mechanisms. Based on the microarray results, 2632 lncRNAs and 2352 mRNAs were differentially expressed between ALI and control mice. The microarray results were confirmed by the quantitative real-time PCR (qRT-PCR) results of ten randomized selected lncRNAs. GO analysis showed that the altered mRNAs were mainly related to the processes of immune system, immune response and defense response. Pathway analysis suggests that tumor necrosis factor (TNF) signaling pathway, NOD-like receptor pathway, and cytokine–cytokine receptor interaction may be involved in ALI. LncRNA-mRNA co-expression network analysis indicated that one individual lncRNA may interact with several mRNAs, and one individual mRNA may also interact with several lncRNAs. Small interfering RNA (siRNA) for ENSMUST00000170214.1, - ENSMUST00000016031.13 significantly inhibited LPS-induced TNF-α and interleukin (IL)-1β production in murine RAW264.7 macrophages. Our results found significant changes of lncRNAs and mRNAs in the lungs of LPS-induced ALI mouse model, and intervention targeting lncRNAs may attenuate LPS-induced inflammation, which may help to elucidate the role of lncRNAs in the pathogenesis and treatment of ALI.


2010 ◽  
Vol 17 (9) ◽  
pp. 1377-1380 ◽  
Author(s):  
Yang Liu ◽  
Yan-Ling Guo ◽  
Shi-Jie Zhou ◽  
Fei Liu ◽  
Feng-Jiao Du ◽  
...  

ABSTRACT Gamma interferon (IFN-γ) is a crucial cytokine for protection against Mycobacterium tuberculosis, but the mechanism of IFN-γ transcription is still unclear. The cyclic AMP (cAMP) responsive element binding (CREB) proteins belong to the bZip (basic leucine zipper) family of transcription factors and are essential for T-cell function and cytokine production. This study focused on the capacity of CREB proteins to regulate IFN-γ transcription in CD3+ T cells obtained from tuberculosis (TB) patients and persons with latent tuberculosis infection (LTBI) in China. The electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and Western blotting were used to demonstrate the regulatory role of CREB. EMSA (in vitro) and ChIP (in vivo) experiments suggested CREB could bind to the IFN-γ proximal promoter in persons with LTBI, whereas no binding was detected in TB patients. Western blotting confirmed the expression of CREB proteins, especially serine-133-phosphorylated CREB, was markedly reduced in TB patients compared with persons with LTBI. These results suggested that CREB could promote the transcription and production of IFN-γ through binding with the IFN-γ proximal promoter, but the regulatory role of CREB was decreased in tuberculosis patients owing to diminished expression of CREB proteins, which in turn reduced the IFN-γ production.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Toshihiro Masaki ◽  
Kiichiro Matsumura

Dystroglycan is a central component of the dystrophin-glycoprotein complex (DGC) that links extracellular matrix with cytoskeleton, expressed in a variety of fetal and adult tissues. Dystroglycan plays diverse roles in development and homeostasis including basement membrane formation, epithelial morphogenesis, membrane stability, cell polarization, and cell migration. In this paper, we will focus on biological role of dystroglycan in Schwann cell function, especially myelination. First, we review the molecular architecture of DGC in Schwann cell abaxonal membrane. Then, we will review the loss-of-function studies using targeted mutagenesis, which have revealed biological functions of each component of DGC in Schwann cells. Based on these findings, roles of dystroglycan in Schwann cell function, in myelination in particular, and its implications in diseases will be discussed in detail. Finally, in view of the fact that understanding the role of dystroglycan in Schwann cells is just beginning, future perspectives will be discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoxia Huo ◽  
Houmin Zhou ◽  
Tiantian Li

MicroRNAs (miRs) are regulators of the formation and development of hepatocellular carcinoma (HCC). The biological role of miR-4325 in HCC has yet to be determined. This study is aimed at dissecting the role of miR-4325 in HCC and the underlying mechanism. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-4325 expression in HCC tissue specimens and cells. Cell proliferation, migration, and invasion were assessed by using the MTT assay and Transwell assay, respectively. The miR-4325 target was predicted based on bioinformatics analysis and validated using the dual-luciferase reporter assay. Rescue experiments in the cells were utilized to functionally characterize the downstream molecular targets of miR-4325. We observed that miR-4325 expression levels were significantly reduced in both HCC tissue specimens and cell lines. Meanwhile, a lower miR-4325 level was associated with a poorer prognosis. Gain and loss of function assays revealed that miR-4325 markedly downregulated HCC cell growth, migration, and invasion. Moreover, we identified GATA-binding protein 6 (GATA6) as a miR-4325 target and found that GATA6 was abnormally expressed in HCC. Rescue assays demonstrated that the regulatory function of miR-4325 in HCC was mediated by GATA6. Taken together, miR-4325 suppresses HCC cell growth, migration, and invasion by targeting GATA6, suggesting that miR-4325 may potentially serve as a novel therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document