scholarly journals Discovery of pluripotency-associated microRNAs in rabbit preimplantation embryos and embryonic stem-like cells

Reproduction ◽  
2013 ◽  
Vol 145 (4) ◽  
pp. 421-437 ◽  
Author(s):  
Pouneh Maraghechi ◽  
László Hiripi ◽  
Gábor Tóth ◽  
Babett Bontovics ◽  
Zsuzsanna Bősze ◽  
...  

MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple biological processes. Increasing experimental evidence implies an important regulatory role of miRNAs during embryonic development and in embryonic stem (ES) cell biology. In the current study, we have described and analyzed the expression profile of pluripotency-associated miRNAs in rabbit embryos and ES-like cells. The rabbit specific ocu-miR-302 and ocu-miR-290 clusters, and three homologs of the human C19MC cluster (ocu-miR-512, ocu-miR-520e, and ocu-miR-498) were identified in rabbit preimplantation embryos and ES-like cells. The ocu-miR-302 cluster was highly similar to its human homolog, while ocu-miR-290 revealed a low level of evolutionary conservation with its mouse homologous cluster. The expression of the ocu-miR-302 cluster began at the 3.5 days post-coitum early blastocyst stage and they stayed highly expressed in rabbit ES-like cells. In contrast, a high expression level of the ocu-miR-290 cluster was detected during preimplantation embryonic development, but a low level of expression was found in rabbit ES-like cells. Differential expression of the ocu-miR-302 cluster and ocu-miR-512 miRNA was detected in rabbit trophoblast and embryoblast. We also found that Lefty has two potential target sites in its 3′UTR for ocu-miR-302a and its expression level increased upon ocu-miR-302a inhibition. We suggest that the expression of the ocu-miR-302 cluster is characteristic of the rabbit ES-like cell, while the ocu-miR-290 cluster may play a crucial role during early embryonic development. This study presents the first identification, to our knowledge, of pluripotency-associated miRNAs in rabbit preimplantation embryos and ES-like cells, which can open up new avenues to investigate the regulatory function of ocu-miRNAs in embryonic development and stem cell biology.

Reproduction ◽  
2015 ◽  
Vol 149 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Jae Yeon Hwang ◽  
Jong-Nam Oh ◽  
Dong-Kyung Lee ◽  
Kwang-Hwan Choi ◽  
Chi-Hun Park ◽  
...  

OCT4 encoded by POU5F1 has a crucial role of maintaining pluripotency in embryonic stem cells during early embryonic development and several OCT4 variants have been identified in mouse and human studies. The objective of this study was to identify different variants of OCT4 and analyze their expression patterns in preimplantation porcine embryos and various tissues. In this study, we showed that POU5F1 transcribes its three variants, namely OCT4A, OCT4B, and OCT4B1. The OCT4B transcript consists of exons identical to the major form of the OCT4 variant, OCT4A, with a differential N-terminal domain-coding exon. The structure of OCT4B1 mRNA was the same as that of OCT4B mRNA, but harbored a cryptic exon. Based on these findings, the transcription levels were investigated and found that OCT4B and OCT4B1 made up ∼20% among the variants in the embryonic stage and this indicates that OCT4A mRNA is dominantly expressed during preimplantation embryo development. In addition, OCT4B mRNA was detected in all tissues examined, while OCT4A and OCT4B1 were detected only in testis but not in other tissues examined. OCT4B1 showed inversely correlated expression with SOX2 and NANOG expression. OCT4A protein was specifically localized to the nuclei, whereas OCT4B was mainly localized to the cytoplasm of the porcine embryos at the blastocyst stage. The findings of this study reveal that the porcine OCT4 gene can potentially encode three variants (OCT4A, OCT4B, and OCT4B1), and they are differentially expressed and would have roles dissimilar between each other in preimplantation embryos and various adult tissues.


2018 ◽  
Vol 19 (10) ◽  
pp. 2958 ◽  
Author(s):  
Xue Li ◽  
Yi Lei ◽  
Miao Wu ◽  
Nan Li

Exosomes released by cells can serve as vehicles for delivery of biological materials and signals. Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nt, which roles are increasingly appreciated in various biological content. Tumor-derived exosomal lncRNAs have been implicated as signaling mediators to orchestrate cell function among neighbor tumor cells. However, the role of tumor-derived lncRNAs in cross-talk with environmental macrophages has yet to be explored. In this paper, we demonstrated that hepatocellular carcinoma (HCC) cells–derived exosomes contain elevated levels of lncRNA TUC339 and that HCC-derived exosomes could be taken up by THP-1 cells. In seeking to dissect the biological function of tumor secreting TUC339 in macrophages, we applied loss-of-function and gain-of-function strategies. We observed increased pro-inflammatory cytokine production, increased co-stimulatory molecule expression, and enhanced phagocytosis upon suppression of TUC339 by siRNA in THP-1 cells, and the opposite effect upon over-expression of this lncRNA, which indicates that TUC339 was involved in the regulation of macrophage activation. Moreover, we detected an elevated level of TUC339 in M(IL-4) macrophages as compared to M(IFN-γ + LPS) macrophages and a down-regulation of TUC339 expression during M(IL-4)-to-M(IFN-γ + LPS) repolarization and vice versa. Furthermore, suppression of TUC339 in macrophages diminished the expression of M(IL-4) markers upon IL-4 treatment while overexpression of TUC339 in macrophages enhanced M(IL-4) markers upon IFN-γ + LPS treatment, which suggests a critical function of TUC339 in the regulation of macrophage M1/M2 polarization. Lastly, using microarray analysis, we identified cytokine-cytokine receptor interaction, CXCR chemokine receptor binding, Toll-like receptor signaling, FcγR-mediated phagocytosis, regulation of the actin cytoskeleton, and cell proliferation are related with TUC339 function in macrophages. Our results provide evidence for a novel regulatory function of tumor-derived exosomal lncRNA TUC339 in environmental macrophages and shed light on the complicated interactions between tumor and immune cells through exosomal lncRNAs.


2019 ◽  
Vol 20 (18) ◽  
pp. 4475 ◽  
Author(s):  
Ehsan Razmara ◽  
Amirreza Bitaraf ◽  
Hassan Yousefi ◽  
Tina H. Nguyen ◽  
Masoud Garshasbi ◽  
...  

In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sangeetha Mahadevan ◽  
Varsha Sathappan ◽  
Budi Utama ◽  
Isabel Lorenzo ◽  
Khalied Kaskar ◽  
...  

Abstract Mammalian parental genomes contribute differently to early embryonic development. Before activation of the zygotic genome, the maternal genome provides all transcripts and proteins required for the transition from a highly specialized oocyte to a pluripotent embryo. Depletion of these maternally-encoded transcripts frequently results in failure of preimplantation embryonic development, but their functions in this process are incompletely understood. We found that female mice lacking NLRP2 are subfertile because of early embryonic loss and the production of fewer offspring that have a wide array of developmental phenotypes and abnormal DNA methylation at imprinted loci. By demonstrating that NLRP2 is a member of the subcortical maternal complex (SCMC), an essential cytoplasmic complex in oocytes and preimplantation embryos with poorly understood function, we identified imprinted postzygotic DNA methylation maintenance, likely by directing subcellular localization of proteins involved in this process, such as DNMT1, as a new crucial role of the SCMC for mammalian reproduction.


Zygote ◽  
1994 ◽  
Vol 2 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Asangla Ao ◽  
Robert P. Erickson ◽  
Robert M.L. Winston ◽  
Alan H Handysude

SummaryGlobal activation of the embryonic genome occurs at the 4– to 8–cell stage in human embryos and is marked by continuation of early cleavage divisions in the presence of transcriptional inhibitors. Here we demonstrate, using recerse transcripase–polymerase chin reaction (Rt–PCR), the presence of transcripts for wo paternal Y chromosomal genes, ZFY and SRY in human preimplantation embryos. ZFY transcripts were detected as early as the pronucleate stage, 20–24 h post-insemination In vitro and at intermediate stages up to the blastocyst stage. SRY Transcripts were also detected at 2–cell to blastocyos observed in many mammalian species focuses attention on the role of events in six determination prior to gonad differentiation.


Zygote ◽  
2012 ◽  
Vol 21 (4) ◽  
pp. 385-393
Author(s):  
Manjula Brahmajosyula ◽  
Masashi Miyake

SummaryArginine modification to citrulline (citrullination) is catalyzed by peptidylarginine deiminases (PADs) and one of the isomers PAD4 is shown to be involved in the gene regulation. In our previous paper we studied the localization and expression of PAD4 and the target of PAD4 in mammalian gametes and preimplantation embryos. In this study the role of PAD4 was examined in the pig diploid parthenogenetic preimplantation embryonic development. Knockdown of PAD4 by RNAi resulted in delayed development. Inhibition of PAD4 by a potent PAD4 inhibitor Cl-amidine from the time of activation for 24 h resulted in developmental arrest at the first cleavage. Inhibition at the later stages of development resulted in delayed or arrested development. A shorter exposure to Cl-amidine for 6 h at any stage of growth resulted in slow development. Thus, this study suggests that PAD4 activity is essential for the normal development of the embryos.


2021 ◽  
Vol 10 (4) ◽  
pp. 5-13
Author(s):  
A.P. Sysoeva ◽  
◽  
N.P. Makarova ◽  
E.E. Kraevaya ◽  
◽  
...  

For a long time, the role of seminal plasma during human fertilization remained underestimated. Numerous studies related to the development of different methods for human embryo in vitro cultivation were gener-ally concerned with the quality of male and female gametes. However, in recent years, the development of Omix technologies provided a new insight into great seminal plasma influence on the morphofunctional characteristics of spermatozoa. This is especially true for the regulatory function of extracellular vesicles secreted by male reproductive tract cells. In this work, we attempted to analyze current data on the influence of extracellular seminal plasma vesicles on the morphofunctional characteristics of spermatozoa to solve male infertility topical issues. The review includes studies by foreign and Russian research groups that werу conducted within the past 5 years and found in PubMed, Google Scholar, and Cochrane Library databases. Very few studies demonstrate that seminal plasma vesicles act as functional regulators of male fertility and their dysfunction may lead to infertility. The use of seminal plasma extracellular vesicles in clinical practice may significantly increase the success of IVF programs, especially in impaired spermatogenesis. Keywords: extracellular vesicles, exosomes, biomarkers, seminal plasma, spermatozoa, assisted reproductive technology, cell biology, morphology


2020 ◽  
Vol 21 (2) ◽  
pp. 456 ◽  
Author(s):  
André F. Gabriel ◽  
Marina C. Costa ◽  
Francisco J. Enguita

Non-coding regulatory RNAs are generated as a core output of the eukaryotic genomes, being essential players in cell biology. At the organism level, they are key functional actors in those tissues and organs with limited proliferation capabilities such as the heart. The role of regulatory networks mediated by non-coding RNAs in the pathophysiology of cardiovascular conditions is starting to be unveiled. However, a deeper knowledge of the functional interactions among the diverse non-coding RNA families and their phenotypic consequences is required. This review presents the current knowledge about the functional crosstalk between circRNAs and other biomolecules in the framework of the cardiovascular diseases.


Author(s):  
Xiangnan Li ◽  
Yueshi Liu ◽  
Qier Mu ◽  
Junliang Tian ◽  
Haiquan Yu

Abstract The miR-290 family is a mouse-specific microRNA cluster, which maintains mouse embryonic stem cells (ESCs) pluripotency by increasing OCT3/4 and C-MYC expression. However, its functions in mouse pre-implantation embryos remain unclear, especially during zygotic genome activation (ZGA). In this study, miR-290 family expression increased from the two-cell embryo stage through the blastocyst stage. Inhibition of miR-294-3p/5p did not affect ZGA initiation or embryo development, whereas pri-miR-290 knockdown decreased ZGA gene expression and slowed embryonic development. In addition, pluripotency decreased in ESCs derived from pri-miR-290 knockdown blastocysts. To clarify the mechanism of action, 33 candidate miR-294-3p target genes were screened from three databases, and miR-294-3p directly targeted the 3′-untranslated region of Cdkn1a (p21) mRNA. Similar to pri-miR-290 knockdown, P21 overexpression impeded embryonic development, whereas simultaneous overexpression of P21 and pri-miR-290 partially rescued embryonic development. The results indicate that the miR-290 family participates in promoting ZGA process and maintaining developmental potency in embryos by targeting p21.


Sign in / Sign up

Export Citation Format

Share Document