scholarly journals Immunotherapy: A Novel Era of Promising Treatments for Multiple Myeloma

2018 ◽  
Vol 19 (11) ◽  
pp. 3613 ◽  
Author(s):  
Maria Castella ◽  
Carlos Fernández de Larrea ◽  
Beatriz Martín-Antonio

Multiple myeloma (MM) remains an incurable hematological malignancy characterized by clonal proliferation of malignant plasma cells in bone marrow. In the last 20 years, the introduction of autologous stem cell transplantation, followed by proteasome inhibitors and immunomodulatory agents, increased the survival of MM patients by 50%. However, still a high proportion of patients relapse and become refractory, especially, high-risk patients with adverse cytogenetics where these treatment combinations have shown limited benefit. Therefore, novel strategies, such as immunotherapy, have been developed in the last few years to help improve the survival of these patients. Immunotherapy treatments include a high number of different strategies used to attack the tumor cells by using the immune system. Here, we will review the most successful immunotherapy strategies published up to date in patients with relapsed or refractory (R/R) MM, including monoclonal antibodies targeting specific antigens on the tumor cells, antibodies combined with cytotoxic drugs or Antibodies Drug Conjugates, immune checkpoint inhibitors which eliminate the barriers that damper immune cells and prevent them from attacking tumor cells, bi-specific T-cell engagers antibodies (BiTEs), bi-specific antibodies and the infusion of chimeric antigen receptor-modified T cells. We overview the results of clinical studies that have been presented up to date and also review pre-clinical studies describing potential novel treatments for MM.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Amir Sharabi ◽  
Nechama Haran-Ghera

Multiple myeloma (MM) is a progressive B-lineage neoplasia characterized by clonal proliferation of malignant plasma cells. Increased numbers of regulatory T cells (Tregs) were determined in mouse models and in patients with MM, which correlated with disease burden. Thus, it became rational to target Tregs for treating MM. The effects of common chemotherapeutic drugs on Tregs are reviewed with a focus on cyclophosphamide (CYC). Studies indicated that selective depletion of Tregs may be accomplished following the administration of a low-dose CYC. We report that continuous nonfrequent administrations of CYC at low doses block the renewal of Tregs in MM-affected mice and enable the restoration of an efficient immune response against the tumor cells, thereby leading to prolonged survival and prevention of disease recurrence. Hence, distinctive time-schedule injections of low-dose CYC are beneficial for breaking immune tolerance against MM tumor cells.


BMJ ◽  
2020 ◽  
pp. m3176
Author(s):  
Urvi A Shah ◽  
Sham Mailankody

ABSTRACT Despite considerable advances in treatment approaches in the past two decades, multiple myeloma remains an incurable disease. Treatments for myeloma continue to evolve with many emerging immunotherapies. The first immunotherapy used to treat hematologic cancers, including multiple myeloma, was an allogeneic stem cell transplant. In the mid-2000s, immunomodulatory drugs thalidomide, lenalidomide, and subsequently pomalidomide were proven to be effective in multiple myeloma and substantially improved survival. The next wave of immunotherapies for multiple myeloma included the monoclonal antibodies daratumumab and elotuzumab, which were approved by the Food and Drug Administration in 2015. Subsequently, a variety of immunotherapies have been developed for multiple myeloma, including chimeric antigen receptor T cells, bispecific antibodies, antibody drug conjugates, and checkpoint inhibitors. Many of these emerging treatments target the B cell maturation antigen, which is expressed on plasma cells, although several other novel receptors are also being studied. This review summarizes the evidence of these various immunotherapies, their mechanism of action, and data from clinical trials regarding the treatments’ safety and efficacy.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1221
Author(s):  
Raquel Lopes ◽  
Bruna Velosa Ferreira ◽  
Joana Caetano ◽  
Filipa Barahona ◽  
Emilie Arnault Carneiro ◽  
...  

Despite the improvement of patient’s outcome obtained by the current use of immunomodulatory drugs, proteasome inhibitors or anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. More recently, the testing in clinical trials of novel drugs such as anti-BCMA CAR-T cells, antibody–drug conjugates or bispecific antibodies broadened the possibility of improving patients’ survival. However, thus far, these treatment strategies have not been able to steadily eliminate all malignant cells, and the aim has been to induce a long-term complete response with minimal residual disease (MRD)-negative status. In this sense, approaches that target not only myeloma cells but also the surrounding microenvironment are promising strategies to achieve a sustained MRD negativity with prolonged survival. This review provides an overview of current and future strategies used for immunomodulation of MM focusing on the impact on bone marrow (BM) immunome.


2021 ◽  
Vol 11 (10) ◽  
pp. 4451
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Eftimie Miutescu ◽  
Anca Hermenean

Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.


2021 ◽  
Vol 12 ◽  
pp. 204062072110196
Author(s):  
Albert Oriol ◽  
Laura Abril ◽  
Anna Torrent ◽  
Gladys Ibarra ◽  
Josep-Maria Ribera

The development of several treatment options over the last 2 decades has led to a notable improvement in the survival of patients with multiple myeloma. Despite these advances, the disease remains incurable for most patients. Moreover, standard combinations of alkylating agents, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies targeting CD38 and corticoids are exhausted relatively fast in a proportion of high-risk patients. Such high-risk patients account for over 20% of cases and currently represent a major unmet medical need. The challenge of drug resistance requires the development of highly active new agents with a radically different mechanism of action. Several immunotherapeutic modalities, including antibody–drug conjugates and T-cell engagers, appear to be promising choices for patients who develop resistance to standard combinations. Chimeric antigen-receptor-modified T cells (CAR-Ts) targeting B-cell maturation antigen have demonstrated encouraging efficacy and an acceptable safety profile compared with alternative options. Multiple CAR-Ts are in early stages of clinical development, but the first phase III trials with CAR-Ts are ongoing for two of them. After the recent publication of the results of a phase II trial confirming a notable efficacy and acceptable safety profile, idecabtagene vicleucel is the first CAR-T to gain regulatory US Food and Drug Administration approval to treat refractory multiple myeloma patients who have already been exposed to antibodies against CD38, proteasome inhibitors, and immunomodulatory agents and who are refractory to the last therapy. Here, we will discuss the preclinical and clinical development of idecabtagene vicleucel and its future role in the changing treatment landscape of relapsed and refractory multiple myeloma.


2021 ◽  
Vol 28 (1) ◽  
pp. 640-660
Author(s):  
Grace Lassiter ◽  
Cole Bergeron ◽  
Ryan Guedry ◽  
Julia Cucarola ◽  
Adam M. Kaye ◽  
...  

Multiple myeloma (MM) is a hematologic malignancy characterized by excessive clonal proliferation of plasma cells. The treatment of multiple myeloma presents a variety of unique challenges due to the complex molecular pathophysiology and incurable status of the disease at this time. Given that MM is the second most common blood cancer with a characteristic and unavoidable relapse/refractory state during the course of the disease, the development of new therapeutic modalities is crucial. Belantamab mafodotin (belamaf, GSK2857916) is a first-in-class therapeutic, indicated for patients who have previously attempted four other treatments, including an anti-CD38 monoclonal antibody, a proteosome inhibitor, and an immunomodulatory agent. In November 2017, the FDA designated belamaf as a breakthrough therapy for heavily pretreated patients with relapsed/refractory multiple myeloma. In August 2020, the FDA granted accelerated approval as a monotherapy for relapsed or treatment-refractory multiple myeloma. The drug was also approved in the EU for this indication in late August 2020. Of note, belamaf is associated with the following adverse events: decreased platelets, corneal disease, decreased or blurred vision, anemia, infusion-related reactions, pyrexia, and fetal risk, among others. Further studies are necessary to evaluate efficacy in comparison to other standard treatment modalities and as future drugs in this class are developed.


Hemato ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 167-181
Author(s):  
Marie Thérèse Rubio ◽  
Adèle Dhuyser ◽  
Stéphanie Nguyen

Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1235
Author(s):  
Tina Paradzik ◽  
Cecilia Bandini ◽  
Elisabetta Mereu ◽  
Maria Labrador ◽  
Elisa Taiana ◽  
...  

Multiple myeloma is a malignancy of terminally differentiated plasma cells, characterized by an extreme genetic heterogeneity that poses great challenges for its successful treatment. Due to antibody overproduction, MM cells depend on the precise regulation of the protein degradation systems. Despite the success of PIs in MM treatment, resistance and adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. To this end, the use of rational combinatorial treatments might allow lowering the dose of inhibitors and therefore, minimize their side-effects. Even though the suppression of different cellular pathways in combination with proteasome inhibitors have shown remarkable anti-myeloma activities in preclinical models, many of these promising combinations often failed in clinical trials. Substantial progress has been made by the simultaneous targeting of proteasome and different aspects of MM-associated immune dysfunctions. Moreover, targeting deranged metabolic hubs could represent a new avenue to identify effective therapeutic combinations with PIs. Finally, epigenetic drugs targeting either DNA methylation, histone modifiers/readers, or chromatin remodelers are showing pleiotropic anti-myeloma effects alone and in combination with PIs. We envisage that the positive outcome of patients will probably depend on the availability of more effective drug combinations and treatment of early MM stages. Therefore, the identification of sensitive targets and aberrant signaling pathways is instrumental for the development of new personalized therapies for MM patients.


2018 ◽  
Vol 19 (12) ◽  
pp. 3924 ◽  
Author(s):  
Hanley Abramson

The past two decades have seen a revolution in multiple myeloma (MM) therapy with the introduction of several small molecules, mostly orally effective, whose mechanisms are based on proteasome inhibition, histone deacetylase (HDAC) blockade, and immunomodulation. Immunotherapeutic approaches to MM treatment using monoclonal antibodies (mAbs), while long in development, began to reap success with the identification of CD38 and SLAMF7 as suitable targets for development, culminating in the 2015 Food and Drug Administration (FDA) approval of daratumumab and elotuzumab, respectively. This review highlights additional mAbs now in the developmental pipeline. Isatuximab, another anti-CD38 mAb, currently is under study in four phase III trials and may offer certain advantages over daratumumab. Several antibody-drug conjugates (ADCs) in the early stages of development are described, including JNJ-63723283, which has attained FDA breakthrough status for MM. Other mAbs described in this review include denosumab, recently approved for myeloma-associated bone loss, and checkpoint inhibitors, although the future status of the latter combined with immunomodulators has been clouded by unacceptably high death rates that caused the FDA to issue clinical holds on several of these trials. Also highlighted are the therapies based on the B Cell Maturation Antigen (BCMA), another very promising target for anti-myeloma development.


2015 ◽  
pp. 1-2
Author(s):  
Edgar Pérez-Herrero

Multiple myeloma is the second more frequently haematological cancer in the western world, after non-Hodgkin lymphoma, being about the 1-2 % of all the cancers cases and the 10-13% of hematologic diseases. The disease is caused by an uncontrolled clonal proliferation of plasma cells in the bone marrow that accumulate in different parts of the body, usually in the bone marrow, around some bones, and rarely in other tissues, forming tumor deposits, called plasmocytomas. This uncontrolled clonal proliferation of plasma cells produces the secretion of an abnormal monoclonal immunoglobulin (paraprotein or M-protein) and prevents the formation of the other antibodies produced by the normal plasma cells that are destroyed. The anormal secretion of paraproteins unbalance the osteoblastosis and osteoclastosis processes, leading to bone lesions that cause lytic bone deposits and the release of calcium from bones (hypercalcemia) that may produce renal failure. Regions affected by bone lesions are the skull, spine, ribs, sternum, pelvis and bones that form part of the shoulders and hips. The substitution of the healthy bone marrow by infiltrating malignant cells and the inhibition of the normal production of red blood cells produce anaemia, thrombocytopenia and leukopenia. Multiple myeloma patients are immunosuppressed because of leukopenia and the abnormal immunoglobulin production caused by the uncontrolled clonal proliferation of plasma cells, being susceptible to bacterial infections, like pneumonias and urinary tract infections. The interaction of immunoglobulin with hemostatic mechanisms may lead to haemorrhagic diathesis or thrombosis. Also, disorders of the central and peripheral nervous system are part of the disease, being the more common neurological manifestations the spinal cord compressions and the peripheral neuropathies.


Sign in / Sign up

Export Citation Format

Share Document