scholarly journals Molecular Mechanisms of Pulmonary Fibrogenesis and Its Progression to Lung Cancer: A Review

2019 ◽  
Vol 20 (6) ◽  
pp. 1461 ◽  
Author(s):  
Tomonari Kinoshita ◽  
Taichiro Goto

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, and limited to the lungs. Despite the increasing research interest in the pathogenesis of IPF, unfavorable survival rates remain associated with this condition. Recently, novel therapeutic agents have been shown to control the progression of IPF. However, these drugs do not improve lung function and have not been tested prospectively in patients with IPF and coexisting lung cancer, which is a common comorbidity of IPF. Optimal management of patients with IPF and lung cancer requires understanding of pathogenic mechanisms and molecular pathways that are common to both diseases. This review article reflects the current state of knowledge regarding the pathogenesis of pulmonary fibrosis and summarizes the pathways that are common to IPF and lung cancer by focusing on the molecular mechanisms.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1609
Author(s):  
Lutfun Nahar ◽  
Shaymaa Al-Majmaie ◽  
Afaf Al-Groshi ◽  
Azhar Rasul ◽  
Satyajit D. Sarker

Dihydrofuranocoumarin, chalepin (1) and furanocoumarin, chalepensin (2) are 3-prenylated bioactive coumarins, first isolated from the well-known medicinal plant Ruta chalepensis L. (Fam: Rutaceae) but also distributed in various species of the genera Boenminghausenia, Clausena and Ruta. The distribution of these compounds appears to be restricted to the plants of the family Rutaceae. To date, there have been a considerable number of bioactivity studies performed on coumarins 1 and 2, which include their anticancer, antidiabetic, antifertility, antimicrobial, antiplatelet aggregation, antiprotozoal, antiviral and calcium antagonistic properties. This review article presents a critical appraisal of publications on bioactivity of these 3-prenylated coumarins in the light of their feasibility as novel therapeutic agents and investigate their natural distribution in the plant kingdom, as well as a plausible biosynthetic route.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 102
Author(s):  
Junmo Ahn ◽  
Hyejin Joo ◽  
Jihye Park ◽  
Jae-Woo Park ◽  
Kwan-Il Kim ◽  
...  

In traditional medicine, lung-moistening herbal medicines (LMHM) are regarded as a major option for treating symptoms of pulmonary fibrosis (PF) including dry cough and dyspnea. As PF agents are being applied to the development of lung cancer agents, PF and lung cancer are reported to have high pathological and pharmacological relationships. This study was proposed to identify candidates for the treatment of PF via investigating the effect of LMHM on PF mouse model. PF was induced by intratracheal instillation of bleomycin. Six water extracts of LMHM such as Farfarae Flos (FAF), Trichosanthis Semen (TRS), Lilii Bulbus (LIB), Adenophorae Radix (ADR), Asteris Radix (ASR), and Scrophulariae Radix (SCR) were prepared and administered (300 mg/kg) orally for 10 days after induction. The changes in body weight, histopathology, and immune cell of bronchoalveolar lavage fluid (BALF) were investigated. Among those, LIB and ADR significantly decreased the deposition of collagen and septal thickness of alveolar and terminal bronchiole. Moreover, SCR, TRS, LIB, and ADR decreased total cells, macrophages, and lymphocytes in BALF. Taken together, ADR and LIB could be the candidates to reduce PF. Further studies on their effects at different doses and analysis of their underlying molecular mechanisms are needed.


2009 ◽  
Vol 05 (01) ◽  
pp. 40
Author(s):  
Adam Yagui-Beltrán ◽  
Lisa M Coussens ◽  
David M Jablons ◽  
◽  
◽  
...  

Lung cancer is the leading cause of all cancer deaths in the US. The international scientific and clinical community has made significant advances toward understanding specific molecular mechanisms underlying lung carcinogenesis; however, despite these insights and advances in surgery and chemoradiotherapy, the prognosis for non-small-cell lung cancer (NSCLC) remains poor. Nonetheless, significant effort is being focused on advancing translational research evaluating the efficacy of novel targeted therapeutic strategies for lung cancer. Illustrative examples of this include antagonists of the epidermal growth factor receptor (EGFR), tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib, and a diverse assortment of anti-angiogenic compounds targeting growth factors and/or their receptors that regulate tumorassociated angiogenic programs. In addition, with the increased awareness of the significant role chronically activated leukocytes play as potentiators of solid-tumor development, the role of innate and adaptive immune cells as regulators of lung carcinogenesis is being examined. While some of these studies are examining how novel therapeutic strategies may enhance the efficacy of lung cancer vaccines, others are evaluating the intrinsic characteristics of the immune response to lung cancer in order to identify rate-limiting molecular and/or cellular programs to target with novel anticancer therapeutics. In this article, we explore important aspects of the immune system and its role in regulating normal respiratory homeostasis compared with the immune response accompanying development of lung cancer. These hallmarks are then discussed in the context of recent efforts to develop lung cancer vaccines, where we have highlighted important concepts that must be taken into consideration for future development of novel therapeutic strategies and clinical trials assessing their efficacy.


2019 ◽  
Vol 20 (17) ◽  
pp. 4291 ◽  
Author(s):  
Oana Zanoaga ◽  
Cornelia Braicu ◽  
Ancuta Jurj ◽  
Alexandru Rusu ◽  
Rares Buiga ◽  
...  

Lung cancer is the leading cause of cancer deaths worldwide. Therefore, for the prevention, diagnosis, prognosis and treatment of lung cancer, efficient preventive strategies and new therapeutic strategies are needed to face these challenges. Natural bioactive compounds and particular flavonoids compounds have been proven to have an important role in lung cancer prevention and of particular interest is the dose used for these studies, to underline the molecular effects and mechanisms at a physiological concentration. The purpose of this review was to summarize the current state of knowledge regarding relevant molecular mechanisms involved in the pharmacological effects, with a special focus on the anti-cancer role, by regulating the coding and non-coding genes. Furthermore, this review focused on the most commonly altered and most clinically relevant oncogenes and tumor suppressor genes and microRNAs in lung cancer. Particular attention was given to the biological effect in tandem with conventional therapy, emphasizing the role in the regulation of drug resistance related mechanisms.


2020 ◽  
Vol 26 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Ali Irfan ◽  
Laila Rubab ◽  
Mishbah Ur Rehman ◽  
Rukhsana Anjum ◽  
Sami Ullah ◽  
...  

AbstractCoumarin sulfonamide is a heterocyclic pharmacophore and an important structural motif which is a core and integral part of different therapeutic scaffolds and analogues. Coumarin sulfonamides are privileged and pivotal templates which have a broad spectrum of applications in the fields of medicine, pharmacology and pharmaceutics. Coumarin sulfonamide exhibited versatile and myriad biomedical activities such as anti-bacterial, antiviral, antifungal, anti-inflammatory and anti-cancer. This review article focuses on the structural features of coumarin sulfonamide derivatives in the treatment of different lethal diseases on the basis of structure-activity relationships (SAR). The plethora of research cited in this review article summarizes and discusses the various substitutions around the coumarin sulfonamide nucleus which have provided a wide spectrum of biological activities and therapeutic potential that has proved attractive to many researchers looking to exploit the coumarin sulfonamide skeleton for drug discovery and the development of novel therapeutic agents.


2015 ◽  
Vol 93 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Argyrios Tzouvelekis ◽  
Naftali Kaminski

Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual’s DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.


Author(s):  
Mohamed Haider ◽  
Amr El Sherbeny ◽  
Valeria Pittalà ◽  
Antonino N. Fallica ◽  
Maha Ali Alghamdi ◽  
...  

Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer; presents novel nanomedicine therapeutics aimed to improve the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for clinical application of nanomedicine in management of LC resistance.


Sign in / Sign up

Export Citation Format

Share Document