scholarly journals The Effects of Lung-Moistening Herbal Medicines on Bleomycin-Induced Pulmonary Fibrosis Mouse Model

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 102
Author(s):  
Junmo Ahn ◽  
Hyejin Joo ◽  
Jihye Park ◽  
Jae-Woo Park ◽  
Kwan-Il Kim ◽  
...  

In traditional medicine, lung-moistening herbal medicines (LMHM) are regarded as a major option for treating symptoms of pulmonary fibrosis (PF) including dry cough and dyspnea. As PF agents are being applied to the development of lung cancer agents, PF and lung cancer are reported to have high pathological and pharmacological relationships. This study was proposed to identify candidates for the treatment of PF via investigating the effect of LMHM on PF mouse model. PF was induced by intratracheal instillation of bleomycin. Six water extracts of LMHM such as Farfarae Flos (FAF), Trichosanthis Semen (TRS), Lilii Bulbus (LIB), Adenophorae Radix (ADR), Asteris Radix (ASR), and Scrophulariae Radix (SCR) were prepared and administered (300 mg/kg) orally for 10 days after induction. The changes in body weight, histopathology, and immune cell of bronchoalveolar lavage fluid (BALF) were investigated. Among those, LIB and ADR significantly decreased the deposition of collagen and septal thickness of alveolar and terminal bronchiole. Moreover, SCR, TRS, LIB, and ADR decreased total cells, macrophages, and lymphocytes in BALF. Taken together, ADR and LIB could be the candidates to reduce PF. Further studies on their effects at different doses and analysis of their underlying molecular mechanisms are needed.

2019 ◽  
Vol 54 (3) ◽  
pp. 1900154 ◽  
Author(s):  
Anna Birnhuber ◽  
Slaven Crnkovic ◽  
Valentina Biasin ◽  
Leigh M. Marsh ◽  
Balazs Odler ◽  
...  

The interleukin (IL)-1 family of cytokines is strongly associated with systemic sclerosis (SSc) and pulmonary involvement, but the molecular mechanisms are poorly understood. The aim of this study was to assess the role of IL-1α and IL-1β in pulmonary vascular and interstitial remodelling in a mouse model of SSc.IL-1α and IL-1β were localised in lungs of SSc patients and in the fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of SSc. Lung function, haemodynamic parameters and pulmonary inflammation were measured in Fra-2 TG mice with or without 8 weeks of treatment with the IL-1 receptor antagonist anakinra (25 mg·kg−1·day−1). Direct effects of IL-1 on pulmonary arterial smooth muscle cells (PASMCs) and parenchymal fibroblasts were investigated in vitro.Fra-2 TG mice exhibited increased collagen deposition in the lung, restrictive lung function and enhanced muscularisation of the vasculature with concomitant pulmonary hypertension reminiscent of the changes in SSc patients. Immunoreactivity of IL-1α and IL-1β was increased in Fra-2 TG mice and in patients with SSc. IL-1 stimulation reduced collagen expression in PASMCs and parenchymal fibroblasts via distinct signalling pathways. Blocking IL-1 signalling in Fra-2 TG worsened pulmonary fibrosis and restriction, enhanced T-helper cell type 2 (Th2) inflammation, and increased the number of pro-fibrotic, alternatively activated macrophages.Our data suggest that blocking IL-1 signalling as currently investigated in several clinical studies might aggravate pulmonary fibrosis in specific patient subsets due to Th2 skewing of immune responses and formation of alternatively activated pro-fibrogenic macrophages.


2019 ◽  
Vol 20 (6) ◽  
pp. 1461 ◽  
Author(s):  
Tomonari Kinoshita ◽  
Taichiro Goto

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, and limited to the lungs. Despite the increasing research interest in the pathogenesis of IPF, unfavorable survival rates remain associated with this condition. Recently, novel therapeutic agents have been shown to control the progression of IPF. However, these drugs do not improve lung function and have not been tested prospectively in patients with IPF and coexisting lung cancer, which is a common comorbidity of IPF. Optimal management of patients with IPF and lung cancer requires understanding of pathogenic mechanisms and molecular pathways that are common to both diseases. This review article reflects the current state of knowledge regarding the pathogenesis of pulmonary fibrosis and summarizes the pathways that are common to IPF and lung cancer by focusing on the molecular mechanisms.


2020 ◽  
Vol 21 (16) ◽  
pp. 5663 ◽  
Author(s):  
Elena Bargagli ◽  
Rosa Metella Refini ◽  
Miriana d’Alessandro ◽  
Laura Bergantini ◽  
Paolo Cameli ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder limited to the lung. New findings, starting from our proteomics studies on IPF, suggest that systemic involvement with altered molecular mechanisms and metabolic disorder is an underlying cause of fibrosis. The role of metabolic dysregulation in the pathogenesis of IPF has not been extensively studied, despite a recent surge of interest. In particular, our studies on bronchoalveolar lavage fluid have shown that the renin–angiotensin–aldosterone system (RAAS), the hypoxia/oxidative stress response, and changes in iron and lipid metabolism are involved in onset of IPF. These processes appear to interact in an intricate manner and to be related to different fibrosing pathologies not directly linked to the lung environment. The disordered metabolism of carbohydrates, lipids, proteins and hormones has been documented in lung, liver, and kidney fibrosis. Correcting these metabolic alterations may offer a new strategy for treating fibrosis. This paper focuses on the role of metabolic dysregulation in the pathogenesis of IPF and is a continuation of our previous studies, investigating metabolic dysregulation as a new target for fibrosis therapy.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S148-S148
Author(s):  
R Manzini ◽  
K Atrott ◽  
M Schwarzfischer ◽  
A Laimbacher ◽  
S Lang ◽  
...  

Abstract Background The humanised monoclonal antibody vedolizumab is used in the treatment of ulcerative colitis (UC) and Crohn’s disease (CD). Vedolizumab reduces intestinal inflammation through inhibition of the integrin heterodimer α 4β 7, responsible for the homing of T cells to the intestinal mucosa. Recent studies have also shown a possible involvement of vedolizumab in the regulation of the innate immune system. Particularly in CD, only a fraction of patients respond to vedolizumab treatment, and combination therapy with immunosuppressant drugs, such as the calcineurin-inhibitor tacrolimus, might prove beneficial. The aim of this study was to assess if co-treatment of vedolizumab and tacrolimus is more efficient in reducing intestinal inflammation in an acute colitis mouse model and to unravel the underlying molecular mechanisms. Methods NOD-SCID-SGM3 mice were reconstituted with human CD34+ cells and treated with 3% dextrane sodium sulphate (DSS) in drinking water to induce acute colitis. Mice were treated with vedolizumab alone (30mg/kg, inject 3 days prior to DSS-start and 50mg/kg at day 0 and at day 4 of DSS-treatment), tacrolimus alone (1mg/kg/day intraperitoneally), or a combination of tacrolimus and vedolizumab during colitis induction. Results As expected, DSS-treatment induced colitis in mice as observed by weight loss, diarrhoea, colon shortening, and endoscopic signs of inflammation categorised by the MEICS score. This translated histologically to an increased immune cell infiltration and epithelial erosion. Vedolizumab and tacrolimus treatment alone did not significantly reduce colitis severity, although endoscopy showed slightly less severe inflammation in vedolizumab-treated mice. Combination of vedolizumab and tacrolimus, however, clearly reduced colonoscopy and histology scores. DSS-treatment increased the number of CD3 T cells and CD68 macrophages in the intestine, an effect counteracted by vedolizumab or tacrolimus alone and further pronounced by combination treatment. Particularly vedolizumab treatment, either alone or in combination, caused clear reduction of pro-inflammatory M1 macrophages. Additionally, vedolizumab alone or combined decreased the levels of intestinal epithelial cell apoptosis as indicated by staining for cleaved caspase-3. Conclusion Our data demonstrate that the anti-inflammatory effect of vedolizumab is potentiated by co-treatment with tacrolimus. Notably, the combination of both drugs was more efficient in reducing T-cell and macrophage infiltration into the intestine. This indicates that the combination of vedolizumab with immunosuppressant drugs might prove beneficial for patients that do not respond to vedolizumab-only therapy.


2017 ◽  
Vol 95 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Hamid Reza Zargar ◽  
Ali Asghar Hemmati ◽  
Mehri Ghafourian ◽  
Ardeshir Arzi ◽  
Anahita Rezaie ◽  
...  

This study investigated the anti-fibrotic potential of royal jelly (RJ) powder against bleomycin-induced pulmonary fibrosis in rats. The rats were given RJ orally (25, 50, and 100 mg/kg per day) for 7 consecutive days before the administration of single intratracheal instillation of bleomycin (BLM) at 7.5 IU/kg. RJ doses were continued for 21 days after BLM exposure. Fibrotic changes in the lungs were studied by cell count and analysis of cytokine levels in the bronchoalveolar lavage fluid (BALF), histopathological examination, and assaying oxidative stress biomarkers in lung tissue. The results showed that BLM administration significantly increased the fibrotic changes, collagen content, and levels of malondialdehyde and decreased total thiol and glutathione peroxidase antioxidant contents in the rats’ lung tissue. An increase in the level of cell counts and pro-inflammatory and pro-fibrotic cytokines such as TNF-α and TGF-β in BALF was observed. Also, it significantly decreased IFN-γ, an anti-fibrotic cytokine, in BALF. However, RJ (50 and 100 mg/kg) reversed all of these biochemical indices as well as histopathological alterations induced by BLM. The present study demonstrates that RJ, by its antioxidant and anti-inflammatory properties, attenuates oxidative damage and fibrosis induced by BLM.


2019 ◽  
Vol 316 (5) ◽  
pp. L961-L976 ◽  
Author(s):  
Sandra Cabrera ◽  
Mariana Maciel ◽  
Daniel Hernández-Barrientos ◽  
Jazmín Calyeca ◽  
Miguel Gaxiola ◽  
...  

Matrix metalloprotease 13 (MMP13) deficiency in pulmonary fibrosis has described contradictory phenotypes on inflammatory and fibrotic responses after lung injury, and its role during lung fibrosis resolution is still undefined. MMP13 has been considered the main collagenase in rodents, and the remodeling of fibrillar collagen is widely attributed to the action of this enzyme. In this study we aimed to explore the role of MMP13 during lung fibrosis progression and resolution. Lung fibrosis was induced by intratracheal instillation, and inflammatory, fibrotic, and resolution stages were evaluated in Mmp13-null and wild-type (WT) mice. Bronchoalveolar lavage fluid was taken for cytokine array analysis and activity of gelatinases. Our results showed that MMP13 is upregulated mainly during two stages after lung injury, inflammation and resolution of fibrosis, and it is mainly expressed by alveolar and interstitial macrophages. Mmp13-null mice exhibited more extensive inflammation at 7 days after bleomycin treatment, and it was characterized by increased macrophage infiltration and significant alterations in proinflammatory cytokines. We also documented that Mmp13-deficient mice experienced more severe and prolonged lung fibrosis compared with WT mice. Delayed resolution in Mmp13-deficient lungs was characterized by a decreased overall collagenolytic activity and persistent fibrotic foci associated with emphysema-like areas. Together, our findings indicate that MMP13 plays an antifibrotic role and its activity is crucial in lung repair and restoration of tissue integrity during fibrosis resolution.


2018 ◽  
Vol 19 (11) ◽  
pp. 3611 ◽  
Author(s):  
Akira Saito ◽  
Masafumi Horie ◽  
Patrick Micke ◽  
Takahide Nagase

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease of unknown etiology and dismal prognosis. IPF patients are known to have an increased risk of lung cancer and careful decision-making is required for the treatment of lung cancer associated with IPF. Transforming growth factor (TGF)-β signaling plays a central role in tissue fibrosis and tumorigenesis. TGF-β-mediated pathological changes that occur in IPF lung tissue may promote the process of field cancerization and provide the microenvironment favorable to cancer initiation and progression. This review summarizes the current knowledge related to IPF pathogenesis and explores the molecular mechanisms that underlie the occurrence of lung cancer in the background of IPF, with an emphasis on the multifaceted effects of TGF-β signaling.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Won-Chul Lee ◽  
Alexandre Reuben ◽  
Xin Hu ◽  
Nicholas McGranahan ◽  
Runzhe Chen ◽  
...  

Abstract Background Metastasis is the primary cause of cancer mortality accounting for 90% of cancer deaths. Our understanding of the molecular mechanisms driving metastasis is rudimentary. Results We perform whole exome sequencing (WES), RNA sequencing, methylation microarray, and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer (NSCLC) primary tumors and matched distant metastases. Furthermore, we analyze published WES data from 35 primary NSCLC and metastasis pairs, and transcriptomic data from 4 autopsy cases with metastatic NSCLC and one metastatic lung cancer mouse model. The majority of somatic mutations are shared between primary tumors and paired distant metastases although mutational signatures suggest different mutagenesis processes in play before and after metastatic spread. Subclonal analysis reveals evidence of monoclonal seeding in 41 of 42 patients. Pathway analysis of transcriptomic data reveals that downregulated pathways in metastases are mainly immune-related. Further deconvolution analysis reveals significantly lower infiltration of various immune cell types in metastases with the exception of CD4+ T cells and M2 macrophages. These results are in line with lower densities of immune cells and higher CD4/CD8 ratios in metastases shown by IHC. Analysis of transcriptomic data from autopsy cases and animal models confirms that immunosuppression is also present in extracranial metastases. Significantly higher somatic copy number aberration and allelic imbalance burdens are identified in metastases. Conclusions Metastasis is a molecularly late event, and immunosuppression driven by different molecular events, including somatic copy number aberration, may be a common characteristic of tumors with metastatic plasticity.


2019 ◽  
Vol 97 (4) ◽  
pp. 357-363 ◽  
Author(s):  
Panfeng Xu ◽  
Yake Yao ◽  
Jianying Zhou

This study was designed to investigate the effect of particulate matter with a diameter of ≤2.5 μm (PM2.5) on bleomycin (BLM) induced pulmonary fibrosis. Thirty-two Sprague Dawley rats were assigned into four groups (intratracheal instillation of 500 μL of PBS (control), 2 mg/kg PM2.5, 3.5 mg/kg BLM A5, and BLM plus 2.0 mg/kg PM2.5) and were fed for 14 days. All rats were sacrificed after the study. Lung tissues and bronchoalveolar lavage fluid were prepared for histological and biological analysis. We found that PM2.5 caused dose-trend pulmonary alveolitis and fibrosis. Histological scores, expression of α-SMA and Collagen I as well as contents of TNF-α and IL-6 in lung tissues were upregulated by treatment of PM2.5. PM2.5 did not change the percentage of neutrophils and macrophages. The expression of endoplasmic reticulum (ER) stress markers Chop and GRP78 was upregulated by treatment of PM2.5. In comparison with either PM2.5 or BLM treatment, BLM plus PM2.5 treatment induced higher histological scores, higher expression of α-SMA, collagen I, TNF-α, IL-6, Chop, and GRP78, with increased neutrophil counts and decreased macrophage counts. We concluded that PM2.5 instillation caused pulmonary alveolitis and fibrosis by stimulating ER stress responses in rat. PM2.5 also showed a synergistic effect on BLM-induced pulmonary fibrosis.


Sign in / Sign up

Export Citation Format

Share Document