scholarly journals PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood

2019 ◽  
Vol 20 (18) ◽  
pp. 4590
Author(s):  
Daniel Christoph Amberger ◽  
Fatemeh Doraneh-Gard ◽  
Carina Gunsilius ◽  
Melanie Weinmann ◽  
Sabine Möbius ◽  
...  

Dendritic cells (DCs) and leukemia-derived DC (DCleu) are potent stimulators of various immunoreactive cells and they play a pivotal role in the (re-) activation of the immune system. As a potential treatment tool for patients with acute myeloid leukemia, we developed and analyzed two new PGE1-containing protocols (Pici-PGE1, Kit M) to generate DC/DCleu ex vivo from leukemic peripheral blood mononuclear cells (PBMCs) or directly from leukemic whole blood (WB) to simulate physiological conditions. Pici-PGE1 generated significantly higher amounts of DCs from leukemic and healthy PBMCs when compared to control and comparable amounts as the already established protocol Pici-PGE2. The proportions of sufficient DC-generation were even higher after DC/DCleu-generation with Pici-PGE1. With Kits, it was possible to generate DCs and DCleu directly from leukemic and healthy WB without induction of blast proliferation. The average amounts of generated DCs and DCleu-subgroups were comparable with all Kits. The PGE1 containing Kit M generated significantly higher amounts of mature DCs when compared to the PGE2-containing Kit K and increased the anti-leukemic-activity. In summary PGE1-containing protocols were suitable for generating DC/DCleu from PBMCs as well as from WB, which reliably (re-) activated immunoreactive cells, improved the overall ex vivo anti-leukemic activity, and influenced cytokine-release-profiles.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5767-5767
Author(s):  
Bing Xu ◽  
Kai Chen ◽  
Qianying Yang ◽  
Jie Zha ◽  
Haijun Zhao ◽  
...  

Acute myeloid leukemia is a heterogeneous hematopoietic neoplasia with a poor clinical outcome despite its treatment have made great progress in recent years. Strategies for targeting Bcl-2 using ABT-199 attract increasing attentions. however, most treatment failure strongly correlates with acquired up-regulation of MCL-1, which become the Achilles's heel of ABT-199 in clinical use. Here we describe low-cytotoxicity dosage of Chidamide (CS055), a novel selective HDACi designed in China, potentiated the cytotoxicity of ABT-199 towards diverse AML cell lines in vitro and primary samples obtained from patients with AML ex vivo, especially those carrying hyperleukocytosis, as well as highly active in vivo in a AML patient-derived xenograft murine model, while sparing normal peripheral blood mononuclear cells. Mechanistically, ABT-199/CS055-induced cytotoxicity was closely associated with inactivation of Mcl-1 and simultaneous induction of DNA damage accumulation. Of note, we also find a superior resensitization activity of CS055 in contrast with Romidepsin. In summary, our findings suggest that CS055 enhance the eliminating activity of ABT-199 towards AML cells, thus implying a highly promising and potent strategy for treatment of relapsed and refractory AML. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nan Xiao ◽  
Meng Nie ◽  
Huanhuan Pang ◽  
Bohong Wang ◽  
Jieli Hu ◽  
...  

AbstractCytokine release syndrome (CRS) is a major cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 infection in severe COVID-19 patients. Metabolism can modulate the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism correlates with inflammatory responses and affects cytokine release in COVID-19 patients. Here we perform both metabolomics and cytokine/chemokine profiling on serum samples from healthy controls, mild and severe COVID-19 patients, and delineate their global metabolic and immune response landscape. Correlation analyses show tight associations between metabolites and proinflammatory cytokines/chemokines, such as IL-6, M-CSF, IL-1α, IL-1β, and imply a potential regulatory crosstalk between arginine, tryptophan, purine metabolism and hyperinflammation. Importantly, we also demonstrate that targeting metabolism markedly modulates the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected rhesus macaques ex vivo, hinting that exploiting metabolic alterations may be a potential strategy for treating fatal CRS in COVID-19.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1681
Author(s):  
Patrick Connerty ◽  
Ernest Moles ◽  
Charles E. de Bock ◽  
Nisitha Jayatilleke ◽  
Jenny L. Smith ◽  
...  

Standard of care therapies for children with acute myeloid leukemia (AML) cause potent off-target toxicity to healthy cells, highlighting the need to develop new therapeutic approaches that are safe and specific for leukemia cells. Long non-coding RNAs (lncRNAs) are an emerging and highly attractive therapeutic target in the treatment of cancer due to their oncogenic functions and selective expression in cancer cells. However, lncRNAs have historically been considered ‘undruggable’ targets because they do not encode for a protein product. Here, we describe the development of a new siRNA-loaded lipid nanoparticle for the therapeutic silencing of the novel oncogenic lncRNA LINC01257. Transcriptomic analysis of children with AML identified LINC01257 as specifically expressed in t(8;21) AML and absent in healthy patients. Using NxGen microfluidic technology, we efficiently and reproducibly packaged anti-LINC01257 siRNA (LNP-si-LINC01257) into lipid nanoparticles based on the FDA-approved Patisiran (Onpattro®) formulation. LNP-si-LINC01257 size and ζ-potential were determined by dynamic light scattering using a Malvern Zetasizer Ultra. LNP-si-LINC01257 internalization and siRNA delivery were verified by fluorescence microscopy and flow cytometry analysis. lncRNA knockdown was determined by RT-qPCR and cell viability was characterized by flow cytometry-based apoptosis assay. LNP-siRNA production yielded a mean LNP size of ~65 nm with PDI ≤0.22 along with a >85% siRNA encapsulation rate. LNP-siRNAs were efficiently taken up by Kasumi-1 cells (>95% of cells) and LNP-si-LINC01257 treatment was able to successfully ablate LINC01257 expression which was accompanied by a significant 55% reduction in total cell count following 48 h of treatment. In contrast, healthy peripheral blood mononuclear cells (PBMCs), which do not express LINC01257, were unaffected by LNP-si-LINC01257 treatment despite comparable levels of LNP-siRNA uptake. This is the first report demonstrating the use of LNP-assisted RNA interference modalities for the silencing of cancer-driving lncRNAs as a therapeutically viable and non-toxic approach in the management of AML.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1963-1969 ◽  
Author(s):  
Daniel G. Kavanagh ◽  
Daniel E. Kaufmann ◽  
Sherzana Sunderji ◽  
Nicole Frahm ◽  
Sylvie Le Gall ◽  
...  

Transfection with synthetic mRNA is a safe and efficient method of delivering antigens to dendritic cells for immunotherapy. Targeting antigens to the lysosome can sometimes enhance the CD4+ T-cell response. We transfected antigen-presenting cells (APCs) with mRNA encoding Gag-p24 and cytoplasmic, lysosomal, and secreted forms of Nef. Antigen-specific cytotoxic T cells were able to lyse the majority of transfected targets, indicating that transfection was efficient. Transfection of APCs with a Nef construct bearing lysosomal targeting signals produced rapid and prolonged antigen presentation to CD4+ and CD8+ T cells. Polyclonal CD4+ and CD8+ T-cell lines recognizing multiple distinct epitopes were expanded by coculture of transfected dendritic cells with peripheral blood mononuclear cells from viremic and aviremic HIV-infected subjects. Importantly, lysosome-targeted antigen drove a significantly greater expansion of Nef-specific CD4+ T cells than cytoplasmic antigen. The frequency of recognition of CD8 but not CD4 epitopes by mRNA-expanded T cells was inversely proportional to sequence entropy and was similar to ex vivo responses from a large chronic cohort. Thus human dendritic cells transfected with mRNA encoding lysosome-targeted HIV antigen can expand a broad, polyclonal repertoire of antiviral T cells, offering a promising approach to HIV immunotherapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mariè van der Merwe ◽  
Richard J. Bloomer

Background. Inflammation is associated with strenuous exercise and methylsulfonylmethane (MSM) has been shown to have anti-inflammatory properties.Methods. Physically active men were supplemented with either placebo or MSM (3 grams per day) for 28 days before performing 100 repetitions of eccentric knee extension exercise.Ex vivoandin vitrotesting consisted of evaluating cytokine production in blood (whole blood and isolated peripheral blood mononuclear cells (PBMCs)) exposed to lipopolysaccharide (LPS), before and through 72 hours after exercise, whilein vivotesting included the evaluation of cytokines before and through 72 hours after exercise.Results. LPS stimulation of whole blood after MSM supplementation resulted in decreased induction of IL-1β, with no effect on IL-6, TNF-α, or IL-8. After exercise, there was a reduced response to LPS in the placebo, but MSM resulted in robust release of IL-6 and TNF-α. A small decrease in resting levels of proinflammatory cytokines was noted with MSM, while an acute postexercise increase in IL-10 was observed with MSM.Conclusion. Strenuous exercise causes a robust inflammatory reaction that precludes the cells from efficiently responding to additional stimuli. MSM appears to dampen the release of inflammatory molecules in response to exercise, resulting in a less incendiary environment, allowing cells to still have the capacity to mount an appropriate response to an additional stimulus after exercise.


Blood ◽  
2012 ◽  
Vol 119 (13) ◽  
pp. 3128-3131 ◽  
Author(s):  
Wanqiu Hou ◽  
James S. Gibbs ◽  
Xiuju Lu ◽  
Christopher B. Brooke ◽  
Devika Roy ◽  
...  

Abstract Surprisingly little is known about the interaction of human blood mononuclear cells with viruses. Here, we show that monocytes are the predominant cell type infected when peripheral blood mononuclear cells are exposed to viruses ex vivo. Remarkably, infection with vesicular stomatitis virus, vaccinia virus, and a variety of influenza A viruses (including circulating swine-origin virus) induces monocytes to differentiate within 18 hours into CD16−CD83+ mature dendritic cells with enhanced capacity to activate T cells. Differentiation into dendritic cells does not require cell division and occurs despite the synthesis of viral proteins, which demonstrates that monocytes counteract the capacity of these highly lytic viruses to hijack host cell biosynthetic capacity. Indeed, differentiation requires infectious virus and viral protein synthesis. These findings demonstrate that monocytes are uniquely susceptible to viral infection among blood mononuclear cells, with the likely purpose of generating cells with enhanced capacity to activate innate and acquired antiviral immunity.


Blood ◽  
1993 ◽  
Vol 81 (5) ◽  
pp. 1333-1341 ◽  
Author(s):  
T Kaneko ◽  
Y Fusauchi ◽  
Y Kakui ◽  
M Masuda ◽  
M Akahoshi ◽  
...  

Abstract An anti-CD3 Fab' x anti-CD13 Fab' bispecific antibody (BsAb) was generated. This BsAb reacted with both CD3+ T cells and CD13+ acute myeloid leukemia (AML) cells. We investigated whether cytokine- stimulated peripheral blood mononuclear cells (PBMC) could lyse patient AML cells after addition of the BsAb. When interleukin-2 (IL-2)- stimulated PBMC were assayed for their cytotoxicity against 51Cr- labeled allogeneic and autologous CD13+ AML cells, their activity was markedly enhanced by the addition of the BsAb. PBMC stimulated with IL- 2 plus anti-CD3 monoclonal antibody (MoAb) showed higher proliferative ability and higher cytotoxicity if this was expressed as lytic units per culture. IL-7-stimulated PBMC also exhibited enhanced cytotoxicity against CD13+ AML cells after addition of the BsAb. Ultrastructurally, CD13+ AML cells incubated with IL-2 plus anti-CD3 MoAb-stimulated PBMC and the BsAb showed apoptotic morphologic changes. A colony assay for AML blast progenitors showed that the colony formation of CD13+ AML cells was inhibited by the addition of autologous IL-2 plus anti-CD3 MoAb-stimulated PBMC, and that this inhibition was further enhanced by the addition of the BsAb. A colony assay for normal bone marrow progenitor cells showed that the addition of autologous IL-2 plus anti- CD3 MoAb-stimulated PBMC and the BsAb inhibited the formation of granulocyte-macrophage colonies and mixed-cell colonies. However, the degree of inhibition was smaller than that for the AML blast colonies. Taken together, these findings suggest that this BsAb may be useful for ex vivo purging of CD13+ AML cells in autologous bone marrow transplantation.


Blood ◽  
2005 ◽  
Vol 106 (6) ◽  
pp. 2186-2188 ◽  
Author(s):  
Cyril Fauriat ◽  
Alessandro Moretta ◽  
Daniel Olive ◽  
Régis T. Costello

Abstract At the frontier between innate and adaptive immunity, dendritic cells (DCs) secrete numerous cytokines and express costimulatory molecules that initiate or enhance natural killer (NK) and T-lymphocyte responses. NK cells also regulate DC physiology by killing immature DCs (iDCs), thus limiting inflammation and inappropriate T-lymphocyte tolerization. In a previous study, we have reported that NK cells from acute myeloid leukemia patients (AML-NK cells) have deficient natural cytotoxicity receptor (NCR) expression. Herein, we analyzed the consequences of such a defect regarding the regulatory role of AML-NK cells in DC physiology. We show that NK cells display poor cytolytic capacities against DCs derived from healthy donor monocytes or derived from autologous leukemic blasts. These data point to a novel defect in the regulation of adaptive immune responses initiated by DCs in AML patients. This may lead to specific T-lymphocyte tolerization by spontaneous or ex vivo expanded iDCs expressing leukemia-derived antigens. (Blood. 2005;106: 2186-2188)


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 289-291 ◽  
Author(s):  
Kai Neben ◽  
Christian Giesecke ◽  
Silja Schweizer ◽  
Anthony D. Ho ◽  
Alwin Krämer

Abstract Genetic instability is a common feature in acute myeloid leukemia (AML). Centrosome aberrations have been described as a possible cause of aneuploidy in many human tumors. To investigate whether centrosome aberrations correlate with cytogenetic findings in AML, we examined a set of 51 AML samples by using a centrosome-specific antibody to pericentrin. All 51 AML samples analyzed displayed numerical and structural centrosome aberrations (36.0% ± 16.6%) as compared with peripheral blood mononuclear cells from 21 healthy volunteers (5.2% ± 2.0%; P < .0001). In comparison to AML samples with normal chromosome count, the extent of numerical and structural centrosome aberrations was higher in samples with numerical chromosome changes (50.5% ± 14.2% versus 34.3% ± 12.2%; P < .0001). When the frequency of centrosome aberrations was analyzed within cytogenetically defined risk groups, we found a correlation of the extent of centrosome abnormalities to all 3 risk groups (P = .0015), defined as favorable (22.5% ± 7.3%), intermediate (35.3% ± 13.1%), and adverse (50.3% ± 15.6%). These results indicate that centrosome defects may contribute to the acquisition of chromosome aberrations and thereby to the prognosis in AML.


Sign in / Sign up

Export Citation Format

Share Document