scholarly journals Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020

2020 ◽  
Vol 21 (4) ◽  
pp. 1362 ◽  
Author(s):  
Jacqueline K. Innes ◽  
Philip C. Calder

The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood (especially fatty fish), supplements and concentrated pharmaceutical preparations. Long-term prospective cohort studies consistently demonstrate an association between higher intakes of fish, fatty fish and marine n-3 fatty acids (EPA + DHA) or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease (CHD) and myocardial infarction (MI), and cardiovascular mortality in the general population. This cardioprotective effect of EPA and DHA is most likely due to the beneficial modulation of a number of known risk factors for CVD, such as blood lipids, blood pressure, heart rate and heart rate variability, platelet aggregation, endothelial function, and inflammation. Evidence for primary prevention of CVD through randomised controlled trials (RCTs) is relatively weak. In high-risk patients, especially in the secondary prevention setting (e.g., post-MI), a number of large RCTs support the use of EPA + DHA (or EPA alone) as confirmed through a recent meta-analysis. This review presents some of the key studies that have investigated EPA and DHA in the primary and secondary prevention of CVD, describes potential mechanisms for their cardioprotective effect, and evaluates the more recently published RCTs in the context of existing scientific literature.

2020 ◽  
Vol 9 (3) ◽  
pp. 232
Author(s):  
Januar Hadi Prasetyo ◽  
Agustono Agustono ◽  
Widya Paramitha Lokapirnasari

Omega-3 fatty acids (Alpha-linolenic acid) and omega-6 fatty acids (Linoleic acid) are a group of essential fatty acids. Essential fatty acids are fatty acids that cannot be synthesized by the body so that must be supplied from the diet. One of the sources of essential fatty acids is derived from fish oil. This study aims to determine the effect of Crude Fish Oil (CFO) in the feed to EPA and DHA content in penaeid shrimp meat. The research method used was a completely randomized design. The treatments used are the varying content of Crude Fish Oil (CFO), which are P0 (0%), P1 (2%), P2 (4%), P3 (6%), and P4 (8%). The results of the study showed significant differences (p <0.05) on the content of EPA and DHA in penaeid shrimp meat. The highest content of EPA and DHA found in P4 treatment (8%) and the lowest at P0 treatment (0%). The use of CFO in penaeid shrimp feed need further study related to the growth of shrimps and prawns reproductive cycle to increase the productivity of penaeid shrimp. CFO on feed should be used at a dose of 6%.


Author(s):  
Bharat Kwatra ◽  
Harsimran Kaur ◽  
Joydip Majumdar ◽  
Mahek Shah ◽  
Mansi Upadhyaya ◽  
...  

This article is an examination of the Analeptic Applications of Omega-3. The scientific development and subsequent clinical applications of Omega-3 in Healthcare continue to influence researchers all over the globe today. This article examines the research done and published by researchers and scientists. Consideration of current trends and data in scientific queries and demonstrates further aspects of the applications of Omega-3 on various health backgrounds, including. Cardiovascular Health: The study addresses the comparison of Omega-3 and Omega-6 in cardiovascular diseases. Higher intake of dietary Omega-3 helps activation, inhibition, and alteration of metabolic and signaling pathways which is associated with better cardiovascular health, while Omega-6 decreases the risk of coronary heart diseases and cardiovascular disease mortality. Immunology: Omega-3 Polyunsaturated Fatty Acids (PUFAs) have been found to show an anti-inflammatory effect in the body by downregulating the activation of various immune cells. They regulate immunological functions via eicosanoids and resolvins which are anti-inflammatory. External supplementation can reduce chronic and acute inflammation as well as reduce the chances of graft rejection. The regulatory effect is shown by modifying gene expression and/or signal transduction in human cells. They are also involved in altering the membrane composition of Fatty Acids(FA) and as a result, they affect the lipid raft structure and also membrane trafficking. Joint Health: The study shows the effects of omega-3 and other fatty acid consumption in Rheumatoid Arthritis(RA), bone marrow lesions, and knee cartilage lesions. It notes the interrelations between synovitis, plasma levels of Omega-3 and Omega-6 PUFAs in OsteoArthritis (OA) patients along with risk factors for OA, which could help consider liable treatments for improvement of OA. The study highlights the importance of the Omega-6:Omega-3 PUFA ratio and clinical and functional outcome measures which can help us in better understanding the role of PUFAs and possible treatments for people with knee osteoarthritis while showing the effect of Omega-3 fatty acids on muscle health in RA. Skin Disorders: Fish oils rich in PUFAs are reported to improve several inflammatory disorders, including rheumatoid arthritis and psoriasis. They have also been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. The significance of omega-3 in skin structure was proved by describing a syndrome caused by stringent fat reduction in the diet that leads to erythema with scaling, hair loss, itching, and increased water loss.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1627
Author(s):  
Ramesh Kumar Saini ◽  
Parchuri Prasad ◽  
Reddampalli Venkataramareddy Sreedhar ◽  
Kamatham Akhilender Naidu ◽  
Xiaomin Shang ◽  
...  

The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.


2021 ◽  
Vol 10 (16) ◽  
pp. e338101623706
Author(s):  
Flávia Santina Pelissari Quinalha ◽  
Luciana Pelissari Manin ◽  
Marina Masetto Antunes ◽  
Guilherme Godoy ◽  
Marília Bellanda Galuch ◽  
...  

Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play an important role in human health. Fish oils enriched with EPA and DHA have commercialized in triacylglycerol (TAG) and ethyl ester forms (EE). In this study, we compared the impact of diets containing fish oil in ethyl ester and triacylglycerol forms as a lipid source in five different tissues as liver, skeleteral muscle, brain, and epididymal white adipose tissue (WAT). The DHA levels were higher in the WAT and skeletal muscle of TAG and EE groups in comparison with the SB group. The body weight and brain, liver, epididymal WAT, and gastrocnemius muscle weights, and serum glucose, TG, cholesterol were not different between the groups. Thus, we conclude that EPA and DHA in the form of EE or TAG influence the fatty acids composition of different tissues.


2020 ◽  
Vol 20 (2) ◽  
pp. 38-40
Author(s):  
A. Levitsky ◽  
A. Lapinska ◽  
I. Selivanskaya

The article analyzes the role of essential polyunsaturated fatty acids (PUFA), especially omega-3 series in humans and animals. The biosynthesis of essential PUFA in humans and animals is very limited, so they must be consumed with food (feed). Тhe ratio of omega-3 and omega-6 PUFA is very important. Biomembranes of animal cells contain about 30% PUFA with a ratio of ω-6/ ω-3 1-2. As this ratio increases, the physicochemical properties of biomembranes and the functional activity of their receptors change. The regulatory function of essential PUFA is that in the body under the action of oxygenase enzymes (cyclooxygenase, lipoxygenase) are formed extremely active hormone-like substances (eicosanoids and docosanoids), which affect a number of physiological processes: inflammation, immunity, metabolism. Moreover, ω-6 PUFA form eicosanoids, which have pro-inflammatory, immunosuppressive properties, and ω-3 PUFAs form eicosanoids and docosanoids, which have anti-inflammatory and immunostimulatory properties. Deficiency of essential PUFA, and especially ω-3 PUFA, leads to impaired development of the body and its state of health, which are manifestations of avitaminosis F. Prevention and treatment of avitaminosis F is carried out with drugs that contain PUFA. To create new, more effective vitamin F preparations, it is necessary to reproduce the model of vitamin F deficiency. An experimental model of vitamin F deficiency in white rats kept on a fat –free diet with the addition of coconut oil, which is almost completely free of unsaturated fatty acids, and saturated fatty acids make up almost 99 % of all fatty acids was developed. The total content of ω-6 PUFA (sum of linoleic and arachidonic acids), the content of ω-3 PUFA (α-linolenic, eicosapentaenoic and docosahexaenoic acids) in neutral lipids (triglycerides and cholesterol esters) defined. Тhe content of ω-6 PUFA under the influence of coconut oil decreased by 3.3 times, and the content of ω-3 PUFA - by 7.5 times. Тhe influence of coconut oil, the content of ω-6 PUFA decreased by 2.1 times, and the content of ω-3 PUFA - by 2.8 times. The most strongly reduces the content of ω-3 PUFA, namely eicosapentaenoic, coconut oil, starting from 5 %. Consumption of FFD with a content of 15 % coconut oil reduces the content of eicosapentaenoic acid to zero, ie we have an absolute deficiency of one of the most important essential PUFAs, which determined the presence of vitamin F deficiency.


2015 ◽  
Vol 6 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Michael L. Kagan ◽  
Aharon Levy ◽  
Alicia Leikin-Frenkel

An oil from micro-algae rich in EPA with no DHA and consisting of 15% polar lipids (phospholipids and glycolipids) showed equivalent uptake of EPA into rat plasma and organs as omega-3 krill oil consisting of EPA and DHA and 40% phospholipids.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1601 ◽  
Author(s):  
Hiroki Saito ◽  
Yu Toyoda ◽  
Tappei Takada ◽  
Hiroshi Hirata ◽  
Ami Ota-Kontani ◽  
...  

The beneficial effects of fatty acids (FAs) on human health have attracted widespread interest. However, little is known about the impact of FAs on the handling of urate, the end-product of human purine metabolism, in the body. Increased serum urate levels occur in hyperuricemia, a disease that can lead to gout. In humans, urate filtered by the glomerulus of the kidney is majorly re-absorbed from primary urine into the blood via the urate transporter 1 (URAT1)-mediated pathway. URAT1 inhibition, thus, contributes to decreasing serum urate concentration by increasing net renal urate excretion. Here, we investigated the URAT1-inhibitory effects of 25 FAs that are commonly contained in foods or produced in the body. For this purpose, we conducted an in vitro transport assay using cells transiently expressing URAT1. Our results showed that unsaturated FAs, especially long-chain unsaturated FAs, inhibited URAT1 more strongly than saturated FAs. Among the tested unsaturated FAs, eicosapentaenoic acid, α-linolenic acid, and docosahexaenoic acid exhibited substantial URAT1-inhibitory activities, with half maximal inhibitory concentration values of 6.0, 14.2, and 15.2 μM, respectively. Although further studies are required to investigate whether the ω-3 polyunsaturated FAs can be employed as uricosuric agents, our findings further confirm FAs as nutritionally important substances influencing human health.


2019 ◽  
Vol 37 ◽  
pp. e291
Author(s):  
B. Szeiffova Bacova ◽  
T. Egan Benova ◽  
C. Viczenczova ◽  
V. Knezl ◽  
V. Dosenko ◽  
...  

2020 ◽  
Vol 150 (12) ◽  
pp. 3086-3093 ◽  
Author(s):  
Michael J Macartney ◽  
Gregory E Peoples ◽  
Peter L McLennan

ABSTRACT Background Supplementing animal diets with fish oil increases myocardial omega-3 polyunsaturated fatty acids [ω-3 (n–3) PUFA], lowers heart rate, and prevents malignant cardiac arrhythmias. In contrast to epidemiological reports, results of some human clinical trials and of unphysiologically high doses employed in animal studies call into question the application of dietary ω-3 PUFA for cardioprotection. Objective This study tested the hypothesis that low ω-3 PUFA dietary thresholds for myocardial incorporation in rats, equivalent in dose to what humans derive from eating fish, can reduce heart rate and arrhythmia vulnerability. Methods Male Sprague-Dawley rats (12–15 wk old) were fed isoenergetic diets containing 10% fat for 4–5 wk. The control diet (CON) contained 5.5% beef tallow, 2.5% sunflower seed oil, and 2% olive oil. Fish oil diets contained high-DHA tuna oil, exchanged for olive oil: 0.31% [fish oil group 1 (FO1)] (human equivalent EPA + DHA 570 mg/d); 1.25% [fish oil group 2 (FO2)] (equivalent EPA + DHA 2.3 g/d). Anaesthetized rats (pentobarbital, 60 mg/kg intraperitoneally) were subjected in vivo to 15-min cardiac ischemia by left coronary artery occlusion and then reperfusion, with arrhythmias detected by electrocardiogram. Results Fish oil dose dependently modulated myocardial membrane fatty acids (DHA mean ± SEM: CON, 5.0 ± 0.2%; FO1, 13.1 ± 0.9%; FO2, 18.3 ± 0.4%; n = 4–5; P-trend &lt; 0.001 ANOVA); resting heart rate (CON, 453 ± 6; FO1, 432 ± 4; FO2, 422 ± 5 bpm; n = 15–18; P-trend &lt; 0.001); reduced ventricular fibrillation (VF) (CON, 89%; FO1, 60%; P = 0.052; FO2, 50%; n = 15–18; P = 0.013 chi square); and total arrhythmia severity (arrhythmia score: CON, 6.1 ± 0.4; FO1, 4.6 ± 0.5; FO2, 3.1 ± 0.7; n = 15–18; P-trend &lt; 0.01) during ischemia and reperfusion (VF: Con, 86%; FO1, 22% P = 0.011; FO2, 8% P = 0.001; n = 7–12); (arrhythmia score: CON, 4.6 ± 0.3; FO1, 3.1 ± 0.3; FO2, 1.3 ± 0.3; n = 7–12; P-trend &lt; 0.001). Conclusions Ventricular arrhythmias were prevented and heart rate was slowed by lower ω-3 PUFA intake in rats than previously reported, equivalent to human fish consumption and associated with increased myocardial DHA. The efficacy of low-dose fish oil demonstrates biological plausibility for nutritional ω-3 fatty acid–mediated cardioprotection and suggests that effectiveness in human clinical trials may be obscured by failure to exclude fish eaters.


Sign in / Sign up

Export Citation Format

Share Document