scholarly journals Enhancing the Thermo-Stability and Anti-Bacterium Activity of Lysozyme by Immobilization on Chitosan Nanoparticles

2020 ◽  
Vol 21 (5) ◽  
pp. 1635 ◽  
Author(s):  
Yanan Wang ◽  
Shangyong Li ◽  
Mengfei Jin ◽  
Qi Han ◽  
Songshen Liu ◽  
...  

The recent emergence of antibiotic-resistant bacteria requires the development of new antibiotics or new agents capable of enhancing antibiotic activity. Lysozyme degrades bacterial cell wall without involving antibiotic resistance and has become a new antibacterial strategy. However, direct use of native, active proteins in clinical settings is not practical as it is fragile under various conditions. In this study, lysozyme was integrated into chitosan nanoparticles (CS-NPs) by the ionic gelation technique to obtain lysozyme immobilized chitosan nanoparticles (Lys-CS-NPs) and then characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), which showed a small particle size (243.1 ± 2.1 nm) and positive zeta potential (22.8 ± 0.2 mV). The immobilization significantly enhanced the thermal stability and reusability of lysozyme. In addition, compared with free lysozyme, Lys-CS-NPs exhibited superb antibacterial properties according to the results of killing kinetics in vitro and measurement of the minimum inhibitory concentration (MIC) of CS-NPs and Lys-CS-NPs against Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus). These results suggest that the integration of lysozyme into CS-NPs will create opportunities for the further potential applications of lysozyme as an anti-bacterium agent.

2021 ◽  
Vol 12 (1) ◽  
pp. 160
Author(s):  
Piergiorgio Cianciullo ◽  
Viviana Maresca ◽  
Sergio Sorbo ◽  
Adriana Basile

Today global health problems such as increased risks of oxidative stress-related diseases and antibiotic resistance are issues of serious concern. Oxidative stress is considered to be the underlying cause of many contemporary pathological conditions such as neurological disorders, ischemia, cancer, etc. Antibiotic-resistant bacteria are a concerning issue in clinical practice, causing an increase in deadly infections. Bryophytes synthesize an outstanding number of secondary metabolites that have shown several potential therapeutic and nutraceutical applications. Research in the field has led to the isolation and characterization of several compounds (flavonoids, terpenoids, and bibenzyls). Some of these compounds have shown promising in vitro antibacterial activities and antioxidant potential comparable to known natural antioxidants such as ascorbic acid and α-tocopherol. However, the process of developing new drugs from naturally occurring molecules is often an impervious path. In this paper, the current state of research of bryophytic antioxidant and antibacterial applications is discussed.


2016 ◽  
Vol 29 (2) ◽  
pp. 321-347 ◽  
Author(s):  
Matthew E. Falagas ◽  
Evridiki K. Vouloumanou ◽  
George Samonis ◽  
Konstantinos Z. Vardakas

SUMMARYThe treatment of bacterial infections suffers from two major problems: spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) pathogens and lack of development of new antibiotics active against such MDR and XDR bacteria. As a result, physicians have turned to older antibiotics, such as polymyxins, tetracyclines, and aminoglycosides. Lately, due to development of resistance to these agents, fosfomycin has gained attention, as it has remained active against both Gram-positive and Gram-negative MDR and XDR bacteria. New data of higher quality have become available, and several issues were clarified further. In this review, we summarize the available fosfomycin data regarding pharmacokinetic and pharmacodynamic properties, thein vitroactivity against susceptible and antibiotic-resistant bacteria, mechanisms of resistance and development of resistance during treatment, synergy and antagonism with other antibiotics, clinical effectiveness, and adverse events. Issues that need to be studied further are also discussed.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 206 ◽  
Author(s):  
Victor A. Rodriguez ◽  
Pradeep Kumar Bolla ◽  
Rahul S. Kalhapure ◽  
Sai Hanuman Sagar Boddu ◽  
Rabin Neupane ◽  
...  

Antibiotic-resistant bacteria may result in serious infections which are difficult to treat. In addition, the poor antibiotic pipeline has contributed to the crisis. Recently, a complex of furosemide and silver (Ag-FSE) has been reported as a potential antibacterial agent. However, its poor aqueous solubility is limiting its activity. The purpose of this study was to encapsulate Ag-FSE into chitosan nanoparticles (CSNPs) and evaluate antibacterial efficacy. Ag-FSE CSNPs were prepared using an ionic gelation technique. The particle size, polydispersity index, and zeta potential of Ag-FSE CSNPs were 197.1 ± 3.88 nm 0.234 ± 0.018 and 36.7 ± 1.78 mV, respectively. Encapsulation efficiency was 66.72 ± 4.14%. In vitro antibacterial activity results showed that there was 3- and 6-fold enhanced activity with Ag-FSE CSNPs against E. coli and S. aureus, respectively. Results also confirmed that Ag-FSE CSNPs showed ~44% release within 4 h at pH 5.5 and 6.5. Moreover, release from the CSNPs was sustained with a cumulative release of ~75% over a period of 24 h. In conclusion, encapsulation of Ag-FSE into CSNPs resulted in significant improvement of antibacterial efficacy with a sustained and pH-sensitive release. Therefore, Ag-FSE CSNPs can be considered as a potential novel antibacterial agent against bacterial infections.


Author(s):  
Hind M. Ewadh1 ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Hassimi Abu Hasan ◽  
Nurina Anwar

Bacteriophages are viruses that attack bacteria and lead to their lysis in an efficient and highly specific manner. These phages could be an ideal option for microbial control. These natural enemies of bacteria were used as therapeutic agents before the advent of antibiotics. Currently, with the rapid spread of multidrug resistant bacteria, phage therapy can be an effective alternative treatment for antibiotic resistant bacteria. This study evaluated the effectiveness of bacteriophages in removing Cefotaxime-resistant clinical Acinetobacter baumannii strains (CTX_RAB) in vitro. Our A. baumannii strains were isolated and identified by standard and genetic methods. The antibiogram resistant was ascertained using phenotypic and genotypic method for cefotaxime antibiotics. The bacteriophages were isolated from environmental water samples. They were exposed to the host bacteria by the double-layer agar technique (DLA) to observe plaques. Cross reaction of the phages on test A.baumannii strains was performed to determine broader-spectrum phages. We successfully isolated Bacteriophage vB_Acib_C_A10 (ф Acib_A10) active against clinical strains of CTX_RAB by enrichichment from activated pond water samlies using representatives of those strains. Purified bacteriophage suspensions obtained were tested on a range of clinical isolates that included representatives of multiple strains of each of the international clonal lineages, as well as minor and sporadic strains. An effective bacteriophage was isolated for each strain. Examination by transmission electron microscopy revealed bacteriophage of the Corticoviridae family. The crossreaction showed phages which affect more than six A.baumannii strains. They can be a good choice for clinical therapeutic use. Conclusions: According to the results, six strains were resistant to all concentration of cefotaxime antibiotics. However, for each of these resistant bacteria one bacteriophage was isolated from environmental samples, which showed the effectiveness of Effective bacteriophages to remove clinically resistant A. baumannii in vitro.


2019 ◽  
Vol 26 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Rajeshwari Sinha ◽  
Pratyoosh Shukla

With the unprecedented rise of drug-resistant pathogens, particularly antibiotic-resistant bacteria, and no new antibiotics in the pipeline over the last three decades, the issue of antimicrobial resistance has emerged as a critical public health threat. Antimicrobial Peptides (AMP) have garnered interest as a viable solution to this grave issue and are being explored for their potential antimicrobial applications. Given their low bioavailability in nature, tailoring new AMPs or strategizing approaches for increasing the yield of AMPs, therefore, becomes pertinent. </P><P> The present review focuses on biotechnological interventions directed towards enhanced AMP synthesis and revisits existing genetic engineering and synthetic biology strategies for production of AMPs. This review further underscores the importance and potential applications of advanced gene editing technologies for the synthesis of novel AMPs in future.


2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3368
Author(s):  
Héloïse Côté ◽  
André Pichette ◽  
Alexis St-Gelais ◽  
Jean Legault

The use of growth-promoting antibiotics in livestock faces increasing scrutiny and opposition due to concerns about the increased occurrence of antibiotic-resistant bacteria. Alternative solutions are being sought, and plants of Lamiaceae may provide an alternative to synthetic antibiotics in animal nutrition. In this study, we extracted essential oil from Monarda didyma, a member of the Lamiaceae family. We examined the chemical composition of the essential oil and then evaluated the antibacterial, antioxidant, and anti-inflammatory activities of M. didyma essential oil and its main compounds in vitro. We then evaluated the effectiveness of M. didyma essential oil in regard to growth performance, feed efficiency, and mortality in both mice and broilers. Carvacrol (49.03%) was the dominant compound in the essential oil extracts. M. didyma essential oil demonstrated antibacterial properties against Escherichia coli (MIC = 87 µg·mL−1), Staphylococcus aureus (MIC = 47 µg·mL−1), and Clostridium perfringens (MIC = 35 µg·mL−1). Supplementing the diet of mice with essential oil at a concentration of 0.1% significantly increased body weight (+5.4%) and feed efficiency (+18.85%). In broilers, M. didyma essential oil significantly improved body weight gain (2.64%). Our results suggest that adding M. didyma essential oil to the diet of broilers offers a potential substitute for antibiotic growth promoters.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Abdallah S. Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Anan Safwat ◽  
Amera Taha ◽  
...  

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.


2018 ◽  
Vol 46 (S1) ◽  
pp. 25-31 ◽  
Author(s):  
Enrico Baraldi ◽  
Olof Lindahl ◽  
Miloje Savic ◽  
David Findlay ◽  
Christine Årdal

The World Health Organization (WHO) has published a global priority list of antibiotic-resistant bacteria to guide research and development (R&D) of new antibiotics. Every pathogen on this list requires R&D activity, but some are more attractive for private sector investments, as evidenced by the current antibacterial pipeline. A “pipeline coordinator” is a governmental/non-profit organization that closely tracks the antibacterial pipeline and actively supports R&D across all priority pathogens employing new financing tools.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 992
Author(s):  
Song Chen ◽  
Yuanli He ◽  
Linna Zhong ◽  
Wenjia Xie ◽  
Yiyuan Xue ◽  
...  

The surface modification of titanium (Ti) can enhance the osseointegration and antibacterial properties of implants. In this study, we modified porous Ti discs with calcium phosphate (CaP) and different concentrations of Lactoferrin (LF) by biomimetic mineralization and examined their antibacterial effects and osteogenic bioactivity. Firstly, scanning electron microscopy (SEM), the fluorescent tracing method, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and the releasing kinetics of LF were utilized to characterize the modified Ti surface. Then, the antibacterial properties against S. sanguis and S. aureus were investigated. Finally, in vitro cytological examination was performed, including evaluations of cell adhesion, cell differentiation, extracellular matrix mineralization, and cytotoxicity. The results showed that the porous Ti discs were successfully modified with CaP and LF, and that the LF-M group (200 μg/mL LF in simulated body fluid) could mildly release LF under control. Further, the LF-M group could effectively inhibit the adhesion and proliferation of S. sanguis and S. aureus and enhance the osteogenic differentiation in vitro with a good biocompatibility. Consequently, LF-M-modified Ti may have potential applications in the field of dental implants to promote osseointegration and prevent the occurrence of peri-implantitis.


Sign in / Sign up

Export Citation Format

Share Document