scholarly journals A Critical Review of the Abilities, Determinants, and Possible Molecular Mechanisms of Seaweed Polysaccharides Antioxidants

2020 ◽  
Vol 21 (20) ◽  
pp. 7774
Author(s):  
Zhiwei Liu ◽  
Xian Sun

Oxidative stress induces various cardiovascular, neurodegenerative, and cancer diseases, caused by excess reactive oxygen species (ROS). It is attributed to the lack of sufficient antioxidant defense capacity to eliminate unnecessary ROS. Seaweeds are largely cultivated for their edible and commercial purposes. Excessive proliferation of some seaweeds has occurred in coastal areas, causing environmental and economic disasters, and even threating human health. Removing and disposing of the excess seaweeds are costly and labor-intensive with few rewards. Therefore, improving the value of seaweeds utilizes this resource, but also deals with the accumulated biomass in the environment. Seaweed has been demonstrated to be a great source of polysaccharides antioxidants, which are effective in enhancing the antioxidant system in humans and animals. They have been reported to be a healthful method to prevent and/or reduce oxidative damage. Current studies indicate that they have a good potential for treating various diseases. Polysaccharides, the main components in seaweeds, are commonly used as industrial feedstock. They are readily extracted by aqueous and acetone solutions. This study attempts to review the current researches related to seaweed polysaccharides as an antioxidant. We discuss the main categories, their antioxidant abilities, their determinants, and their possible molecular mechanisms of action. This review proposes possible high-value ways to utilize seaweed resources.

2019 ◽  
Vol 25 (37) ◽  
pp. 4827-4836 ◽  
Author(s):  
Valeria Pittalà ◽  
Loredana Salerno ◽  
Giuseppe Romeo ◽  
Rosaria Acquaviva ◽  
Claudia Di Giacomo ◽  
...  

Diabetes mellitus is a complex metabolic disease characterized by high blood sugar levels. Different pathogenic processes are involved in the etiology of the disease. Indeed, chronic diabetes hyperglycemia is often associated with severe long-term complications including cardiovascular symptoms, retinopathy, nephropathy, and neuropathy. Although the precise molecular mechanisms underlying diabetes are not yet clear, it is widely accepted that increased levels of oxidative stress are involved in the onset, development and progression of diabetes and its related complications. In this regard, the use of natural antioxidant polyphenols, able to control free radical production, to increase intracellular antioxidant defense and to prevent the onset of oxidative stress, can be of high interest. Caffeic acid phenethyl ester (CAPE), a natural polyphenolic substance, is one of the main components of propolis. Due to its multifaceted biological activities, including antioxidant, antimicrobial, anti-inflammatory, antitumor, and immunomodulatory effects, CAPE has received great attention during the last few decades. In the present paper the therapeutic potential of CAPE in diabetes is extensively reviewed.


2020 ◽  
Vol 1 (1) ◽  
pp. 19-23
Author(s):  
Diah Willis L ◽  
Thomas Priyasmanu ◽  
Wahyu Panji A ◽  
D. H. Praswanto ◽  
E. Y. Setyawan

Development in the current development sector has grown rapidly, in this development we can see a good potential to be developed, namely the development of bricks with good quality compared to using red bricks which production takes a long time. Batako is an alternative that can be used in the construction of a building, because currently the price of red brick is quite high because the production cost is quite expensive. Besides, the price of firewood used for cooking red brick is getting difficult. Meanwhile, the demand for brick gradually increased because brick was one of the main components in building construction. So it needs to be developed in making brick blocks because the time is relatively short in the drying process. Therefore the community service team made a brick making machine with a vibration system for compaction and a faster production process in brick making using a machine that has been made, so that it can increase partner income, who previously produced 120 pieces with a manual system using a machine that could produce 500 pieces of brick per day.


2020 ◽  
Vol 19 (2) ◽  
pp. 133-138
Author(s):  
Wenyu Chen ◽  
Hui He

Trilobatin is a natural plant-derived glycosylated flavonoid that has been shown to exhibit multiple beneficial pharmacologic activities including protection of heart against H/R-induced cardiomyocyte injury. However, the molecular mechanisms underlying protection from H/R-induced cardiomyocyte injury remain unknown. Using H9C2 cells as a model, we examined the effect of trilobatin on H/R-induced cellular injury, apoptosis, and generation of reactive oxygen species. The results showed that trilobatin protected H9C2 cells not only from cell death and apoptosis, but also counteracted H/R-induced changes in malondialdehyde, superoxide dismutase, glutathione, and glutathione peroxidase. The evaluation of the mechanism underlying the effect of trilobatin on protection from H/R-induced cellular injury suggested changes in the regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway.


2019 ◽  
Vol 77 (9) ◽  
Author(s):  
Narges Dastmalchi ◽  
Seyed Mahdi Banan Khojasteh ◽  
Mirsaed Miri Nargesi ◽  
Reza Safaralizadeh

ABSTRACT Helicobacter pylori infection performs a key role in gastric tumorigenesis. Long non-coding RNAs (lncRNAs) have demonstrated a great potential to be regarded as effective malignancy biomarkers for various gastrointestinal diseases including gastric cancer (GC). The present review highlights the relationship between lncRNAs and H. pylori in GC. Several studies have examined not only the involvement of lncRNAs in H. pylori-associated GC progression but also their molecular mechanisms of action. Among the pertinent studies, some have addressed the effects of H. pylori infection on modulatory networks of lncRNAs, while others have evaluated the effects of changes in the expression level of lncRNAs in H. pylori-associated gastric diseases, especially GC. The relationship between lncRNAs and H. pylori was found to be modulated by various molecular pathways.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 880
Author(s):  
Karine Mandon ◽  
Fanny Nazaret ◽  
Davoud Farajzadeh ◽  
Geneviève Alloing ◽  
Pierre Frendo

Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1168
Author(s):  
Dimitrios S. Kasampalis ◽  
Danai-Christina Aktsoglou ◽  
Pavlos Tsouvaltzis ◽  
Anastasios S. Siomos

A floating system was established in a heated glass greenhouse in order to investigate whether the effect of amino acids (0.25 or 0.50% of a commercial amino acid (AA) solution Amino16®) during peppermint and spearmint production on plant developmental and nutritional status may be in part attributed to salinity induced osmotic stress. For this reason, in some nutrient solutions, three levels of salinity were induced by adding 0, 10, or 20 mM NaCl. According to the results, it can be concluded that spearmint is mostly favored by the highest amino acid supplement of the nutrient solution (0.50%) in terms of a substantial improvement of the antioxidant nutritional quality (by up to 130%) at the expense of a reduced biomass production (by <30%). Enzymic antioxidant defense mechanism (APX and POD) was efficiently activated, preventing severe lipid peroxidation and the accumulation of reactive oxygen species such as H2O2 and maintaining the proline content at the normal levels. The osmotic stress that was induced by the excessive AA concentration and confirmed by the chlorophyl fluorescence variations was probably related to NH4+ excess supply in the growing media and was not associated with the elevated electrical conductivity in the solution. The absence of any adverse stressful consequences upon the addition of 20 mM NaCl may be attributed to the high salt tolerance of peppermint and spearmint species.


2021 ◽  
Vol 22 (14) ◽  
pp. 7340
Author(s):  
Alvina I. Khamidullina ◽  
Ekaterina A. Varlamova ◽  
Nour Alhuda Hammoud ◽  
Margarita A. Yastrebova ◽  
Alexandra V. Bruter

Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.


Sign in / Sign up

Export Citation Format

Share Document