scholarly journals Cellular Senescence and Inflammaging in the Skin Microenvironment

2021 ◽  
Vol 22 (8) ◽  
pp. 3849
Author(s):  
Young In Lee ◽  
Sooyeon Choi ◽  
Won Seok Roh ◽  
Ju Hee Lee ◽  
Tae-Gyun Kim

Cellular senescence and aging result in a reduced ability to manage persistent types of inflammation. Thus, the chronic low-level inflammation associated with aging phenotype is called “inflammaging”. Inflammaging is not only related with age-associated chronic systemic diseases such as cardiovascular disease and diabetes, but also skin aging. As the largest organ of the body, skin is continuously exposed to external stressors such as UV radiation, air particulate matter, and human microbiome. In this review article, we present mechanisms for accumulation of senescence cells in different compartments of the skin based on cell types, and their association with skin resident immune cells to describe changes in cutaneous immunity during the aging process.

2021 ◽  
Vol 22 (23) ◽  
pp. 12641
Author(s):  
Erika Csekes ◽  
Lucia Račková

The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Aruna Bhatia ◽  
Harmandeep Kaur Sekhon ◽  
Gurpreet Kaur

The functioning of the immune system of the body is regulated by many factors. The abnormal regulation of the immune system may result in some pathological conditions. Sex hormones of reproductive system are one of the major factors that regulate immune system due to the presence of hormone receptors on immune cells. The interaction of sex hormones and immune cells through the receptors on these cells effect the release of cytokines which determines the proliferation, differentiation, and maturation of different types of immunocytes and as a result the outcome of inflammatory or autoimmune diseases. The different regulations of sex hormones in both sexes result in immune dimorphism. In this review article the mechanism of regulation of immune system in different sexes and its impact are discussed.


2020 ◽  
Author(s):  
Yawei Qin ◽  
Emily M. Mace ◽  
John P. Barton

The immune system employs a wide variety of strategies to protect the body from infection. Cells such as natural killer (NK) cells and macrophages can recognize and eliminate targets with aberrant surface ligand expression in a manner that is not antigen-specific. This innate mechanism of activation must be tightly regulated to prevent autoimmunity. Here we introduce a quantitative model of the regulation of nonspecific activation inspired by Bayesian inference. Our model captures known behaviors of innate immune cells, including adaptation to changing environments and the development of hyposensitivity after prolonged exposure to activating signals. Our analysis also reveals a tradeoff between precision and adaptation. Maintaining the ability to adapt to different environments leads to heterogeneous responses, even for hypothetical populations of immune cells and targets that have identical surface receptor and ligand expression. Collectively, our results describe an adaptive algorithm for self/nonself discrimination that functions even in the absence of antigen restriction. The same model could also apply more broadly to the adaptive regulation of activation for other immune cell types.


2019 ◽  
Vol 3 (12) ◽  
pp. 475-479
Author(s):  
Lutfia Ariska Ramadhani ◽  
Trisniartami Setyaningrum ◽  
Etty Hary Kusumastuti

Skin aging is a condition in which cell and tissue changes occur due to mechanism abnormalities and a decrease in function of a tissue which can be triggered by intrinsic or extrinsic factors. Intrinsic factor is an aging process which originates from the body of an individual itself while extrinsic factor is an aging process caused by factors from the outside, such as excessive exposure to the UV light, smoking, or poor nutrition. Skin rejuvenation therapy, hopefully, would be able to restore or even slow down the aging process itself. This research was a descriptive observational using retrospective approach based on patients’ medical record in the Outpatient Clinic of Dermatology and Venereology Department in Dr. Soetomo General Hospital Surabaya in January to December 2017. This study obtained 203 samples (198 women/females and 5 men/males) with the most age group ranging from 45-


2020 ◽  
Author(s):  
Egarit Noulsri

Abstract In the past few years, interest has increased in cell-derived microparticles (MPs), which are defined by their size of from 0.1 to 1 μm, and can be derived from various cell types, including endothelial cells, leukocytes, red blood cells (RBCs), and platelets. These MPs carry negatively charged phosphatidylserine (PS) on their surfaces and proteins packaged from numerous cellular components. MPs that have been shed by the body can play important roles in the pathophysiology of diseases and can affect various biological systems. Among these systems, the immune components have been shown to be modulated by MPs. Therefore, understanding the roles of MPs in the immune system is crucial to developing alternative therapeutic treatments for diseases. This review describes the effects of MPs on various immune cells and provides plausible potential applications of the immune-modulating properties of MPs in clinical medicine.


Author(s):  
Ziyi Chen ◽  
Aiping Wu

Abstract Tissue immune cells have long been recognized as important regulators for the maintenance of balance in the body system. Quantification of the abundance of different immune cells will provide enhanced understanding of the correlation between immune cells and normal or abnormal situations. Currently, computational methods to predict tissue immune cell compositions from bulk transcriptomes have been largely developed. Therefore, summarizing the advantages and disadvantages is appropriate. In addition, an examination of the challenges and possible solutions for these computational models will assist the development of this field. The common hypothesis of these models is that the expression of signature genes for immune cell types might represent the proportion of immune cells that contribute to the tissue transcriptome. In general, we grouped all reported tools into three groups, including reference-free, reference-based scoring and reference-based deconvolution methods. In this review, a summary of all the currently reported computational immune cell quantification tools and their applications, limitations, and perspectives are presented. Furthermore, some critical problems are found that have limited the performance and application of these models, including inadequate immune cell type, the collinearity problem, the impact of the tissue environment on the immune cell expression level, and the deficiency of standard datasets for model validation. To address these issues, tissue specific training datasets that include all known immune cells, a hierarchical computational framework, and benchmark datasets including both tissue expression profiles and the abundances of all the immune cells are proposed to further promote the development of this field.


2019 ◽  
Vol 15 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Rashmi Saxena Pal ◽  
Yogendra Pal ◽  
Pranay Wal

Background: Postpartum is an important phase of life after childbirth. It needs to be highly important as in terms of health in future life. This time brings lots of complications with it. Lots of aspects need to be looked after as the care of the new mom is essential to bring back her stamina and strength. Objective: The objective of this review article is to explore the heeding power hidden in nature for returning back to the mothers to the pre-pregnancy state. There are various areas of concern after postpartum to heal up the body overall, such as to heal up the uterus, providing galactagogues, nutritives, maintenance of hormones and restoring back the strength and tone of the abdomen. Materials and Methods: A literature search has been done on the various herbs, which fulfill the various desired aspects to be looked after post pregnancy. Results: There are various herbs present in nature, regarding their hidden potential still the awareness is not up to the mark. This review highlights the various plants which have been proven to be useful in dealing the post-pregnancy issues. They deal with all the aspects of complications and issues occurring post pregnancy. They heal the uterus which has undergone so many types of changes, maintains the balance of hormones back, besides providing nutrition and increasing the production of milk, they also restore back the tone and strength of the walls of the abdomen. Conclusion: These herbs are full-fledged with the phytoconstituents that heal the whole system after delivery. The need of present time is to take patiently these as the source of medicines regularly under medical supervision to overcome the various concerned problems of post pregnancy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1445
Author(s):  
Taisa Nogueira Pansani ◽  
Thanh Huyen Phan ◽  
Qingyu Lei ◽  
Alexey Kondyurin ◽  
Bill Kalionis ◽  
...  

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Yang Zhao ◽  
Hao Guo ◽  
Wenda Wang ◽  
Guoyang Zheng ◽  
Zhan Wang ◽  
...  

Abstract Objective Tuberous sclerosis complex (TSC) is a rare autosomal dominant disease characterized by lesions throughout the body. Our previous study showed the abnormal up-regulation of miRNAs plays an important part in the pathogenesis of TSC-related renal angiomyolipoma (TSC-RAML). circRNAs were known as important regulators of miRNA, but little is known about the circRNAs in TSC-RAMLs. Methods Microarray chips and RNA sequencing were used to identify the circRNAs and mRNAs that were differently expressed between the TSC-RAML and normal kidney tissue. A competitive endogenous RNA (ceRNA) regulatory network was constructed to reveal the regulation of miRNAs and mRNAs by the circRNAs. The biological functions of circRNA and mRNA were analyzed by pathway analysis. Microenvironmental cell types were estimated with the MCP-counter package. Results We identified 491 differentially expressed circRNAs (DECs) and 212 differentially expressed genes (DEGs), and 6 DECs were further confirmed by q-PCR. A ceRNA regulatory network which included 6 DECs, 5 miRNAs, and 63 mRNAs was established. Lipid biosynthetic process was significantly up-regulated in TSC-RAML, and the humoral immune response and the leukocyte chemotaxis pathway were found to be down-regulated. Fibroblasts are enriched in TSC-RAML, and the up-regulation of circRNA_000799 and circRNA_025332 may be significantly correlated to the infiltration of the fibroblasts. Conclusion circRNAs may regulate the lipid metabolism of TSC-RAML by regulation of the miRNAs. Fibroblasts are enriched in TSC-RAMLs, and the population of fibroblast may be related to the alteration of circRNAs of TSC-RAML. Lipid metabolism in fibroblasts is a potential treatment target for TSC-RAML.


2021 ◽  
Vol 22 (7) ◽  
pp. 3649
Author(s):  
Patricia Ramos-Ramírez ◽  
Omar Tliba

Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and “directly” regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.


Sign in / Sign up

Export Citation Format

Share Document