scholarly journals Aptamers for Anti-Viral Therapeutics and Diagnostics

2021 ◽  
Vol 22 (8) ◽  
pp. 4168
Author(s):  
Tae-Hyeong Kim ◽  
Seong-Wook Lee

Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1320
Author(s):  
Yogesh B Narkhede ◽  
Karen J Gonzalez ◽  
Eva-Maria Strauch

The emergence of novel viral infections of zoonotic origin and mutations of existing human pathogenic viruses represent a serious concern for public health. It warrants the establishment of better interventions and protective therapies to combat the virus and prevent its spread. Surface glycoproteins catalyzing the fusion of viral particles and host cells have proven to be an excellent target for antivirals as well as vaccines. This review focuses on recent advances for computational structure-based design of antivirals and vaccines targeting viral fusion machinery to control seasonal and emerging respiratory viruses.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Ana Cláudia dos Santos Pereira Andrade ◽  
Paulo Victor de Miranda Boratto ◽  
Rodrigo Araújo Lima Rodrigues ◽  
Talita Machado Bastos ◽  
Bruna Luiza Azevedo ◽  
...  

ABSTRACT Giant viruses are complex members of the virosphere, exhibiting outstanding structural and genomic features. Among these viruses, the pandoraviruses are some of the most intriguing members, exhibiting giant particles and genomes presenting at up to 2.5 Mb, with many genes having no known function. In this work, we analyzed, by virological and microscopic methods, the replication cycle steps of three new pandoravirus isolates from samples collected in different regions of Brazil. Our data indicate that all analyzed pandoravirus isolates can deeply modify the Acanthamoeba cytoplasmic environment, recruiting mitochondria and membranes into and around the electron-lucent viral factories. We also observed that the viral factories start forming before the complete degradation of the cellular nucleus. Various patterns of pandoravirus particle morphogenesis were observed, and the assembly of the particles seemed to be started either by the apex or by the opposite side. On the basis of the counting of viral particles during the infection time course, we observed that pandoravirus particles could undergo exocytosis after their morphogenesis in a process that involved intense recruitment of membranes that wrapped the just-formed particles. The treatment of infected cells with brefeldin affected particle exocytosis in two of the three analyzed strains, indicating biological variability among isolates. Despite such particle exocytosis, the lysis of host cells also contributed to viral release. This work reinforces knowledge of and reveals important steps in the replication cycle of pandoraviruses. IMPORTANCE The emerging Pandoraviridae family is composed of some of the most complex viruses known to date. Only a few pandoravirus isolates have been described until now, and many aspects of their life cycle remain to be elucidated. A comprehensive description of the replication cycle is pivotal to a better understanding of the biology of the virus. For this report, we describe new pandoraviruses and used different methods to better characterize the steps of the replication cycle of this new group of viruses. Our results provide new information about the diversity and biology of these giant viruses.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 87 ◽  
Author(s):  
Alberto Falco ◽  
Regla Medina-Gali ◽  
José Poveda ◽  
Melissa Bello-Perez ◽  
Beatriz Novoa ◽  
...  

Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71–100) exerts an anti-protozoal activity, probably due to membrane rupture. In addition, NK-lysine protein is highly expressed in zebrafish in response to viral infections. In this work several biophysical methods, such as vesicle aggregation, leakage and fluorescence anisotropy, are employed to investigate the interaction of Nkl71–100 with different glycerophospholipid vesicles. At acidic pH, Nkl71–100 preferably interacts with phosphatidylserine (PS), disrupts PS membranes, and allows the content leakage from vesicles. Furthermore, Nkl71–100 exerts strong antiviral activity against spring viremia of carp virus (SVCV) by inhibiting not only the binding of viral particles to host cells, but also the fusion of virus and cell membranes, which requires a low pH context. Such antiviral activity seems to be related to the important role that PS plays in these steps of the replication cycle of SVCV, a feature that is shared by other families of virus-comprising members with health and veterinary relevance. Consequently, Nkl71–100 is shown as a promising broad-spectrum antiviral candidate.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1646
Author(s):  
Tejabhiram Yadavalli ◽  
Ipsita Volety ◽  
Deepak Shukla

The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.


2021 ◽  
Author(s):  
Bijina Balakrishnan ◽  
Kent Lai

Coronaviruses (CoV) exploits the endoplasmic reticulum (ER) of the host cells for replication and in doing so, increases ER stress. evokes Unfolded Protein Response (UPR) and possibly autophagy, which could all attribute to the pathophysiology of the viral infections. To date, little is known about the roles of ER stress, UPR, and autophagy in SARS-CoV-2 infection. Here we over-expressed the viral Spike (S) protein in cultured HEK293T cells, as it has been shown that such protein is largely responsible for UPR activation in other CoV-infected cells. We noticed, in the transfected cells, heightened ER stress, activation of the PERK-eIF2α arm of the UPR, induction of autophagy and cell death. When we treated the transfected cells with Tauroursodeoxycholic acid (TUDCA), 4-phenyl butyric acid (PBA), Salubrinal, Trazadone hydrochloride, and Dibenzoylmethane (DBM), we saw reduced the BiP/GRP78 levels, but only PBA and TUDCA could significantly diminish the levels of peIF2α and autophagy expression.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1457
Author(s):  
Mikhail Kolev

The human organism is a very complex system. To be in good health, its components must function properly. One of the most important systems of an organism is the immune system. It protects the body from the harmful effects of various external and internal agents. Sometimes, however, the immune system starts attacking its own healthy cells, tissues and organs. Then autoimmune diseases arise. They are widespread in recent decades. There is evidence that often autoimmune responses occur due to viral infections. In this paper, a new mathematical model of a general autoimmune disease is proposed. It describes the interactions between viral particles and host cells. The model is formulated by using integro-differential equations of Boltzmann type. This approach is typical for the nonequilibrium statistical mechanics. A preliminary qualitative and quantitative analysis of the model is presented.


2002 ◽  
Vol 83 (9) ◽  
pp. 2309-2319 ◽  
Author(s):  
Petra Mannová ◽  
David Liebl ◽  
Nina Krauzewicz ◽  
Anna Fejtová ◽  
Jitka Štokrová ◽  
...  

Polyomavirus mutants E, Q and H, expressing non-myristylated VP2, were generated by replacing the N-terminal glycine residue with glutamic acid, glutamine or histidine, respectively. Viruses mutated in either VP2 or VP3 translation initiation codons were also prepared. All mutated genomes, when transfected into murine host cells, gave rise to viral particles. Infectivity of VP2− and VP3− viruses, as measured by the number of cells expressing viral antigens, was dramatically diminished, indicative of defects in the early stages of infection. In contrast, the absence of a myristyl moiety on VP2 did not substantially affect the early steps of virus infection. No differences in numbers of cells expressing early or late viral antigens were observed between wild-type (wt) and E or Q myr− viruses during the course of a life cycle. Furthermore, no delay in virus DNA replication was detected. However, when cells were left for longer in culture, the number of infected cells, measured by typical virus bursts, was much lower when mutant rather than wt genomes were used. In situ, cell fractionation studies revealed differences in the interaction of viral particles with host cell structures. The infectivity of mutants was affected not only by loss of the myristyl group on VP2, but also, and to a greater extent, by alterations of the N-terminal amino acid composition.


Author(s):  
Homa Boroumand ◽  
Fereshteh Badie ◽  
Samaneh Mazaheri ◽  
Zeynab Sadat Seyedi ◽  
Javid Sadri Nahand ◽  
...  

Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.


Author(s):  
Keyvan Nazerian

A herpes-like virus has been isolated from duck embryo fibroblast (DEF) cultures inoculated with blood from Marek's disease (MD) infected birds. Cultures which contained this virus produced MD in susceptible chickens while virus negative cultures and control cultures failed to do so. This and other circumstantial evidence including similarities in properties of the virus and the MD agent implicate this virus in the etiology of MD.Histochemical studies demonstrated the presence of DNA-staining intranuclear inclusion bodies in polykarocytes in infected cultures. Distinct nucleo-plasmic aggregates were also seen in sections of similar multinucleated cells examined with the electron microscope. These aggregates are probably the same as the inclusion bodies seen with the light microscope. Naked viral particles were observed in the nucleus of infected cells within or on the edges of the nucleoplasmic aggregates. These particles measured 95-100mμ, in diameter and rarely escaped into the cytoplasm or nuclear vesicles by budding through the nuclear membrane (Fig. 1). The enveloped particles (Fig. 2) formed in this manner measured 150-170mμ in diameter and always had a densely stained nucleoid. The virus in supernatant fluids consisted of naked capsids with 162 hollow, cylindrical capsomeres (Fig. 3). Enveloped particles were not seen in such preparations.


Author(s):  
H.M. Mazzone ◽  
W.F. Engler ◽  
G. Wray ◽  
A. Szirmae ◽  
J. Conroy ◽  
...  

Viral inclusion bodies isolated from infected pest insects are being evaluated by the U.S. Dept. of Agriculture as biological insecticides against their hosts. Our research on these inclusion bodies constitutes part of an effort to support their approval by the Environmental Protection Agency as insect control agents. The inclusion bodies in this study are polyhedral in shape and contain rod-shaped viral particles. When ingested by pest insects, the inclusion bodies are broken down in the insect gut and release the viral particles which infect and multiply in the nuclei of host cells. These viruses are termed nucleopolyhedrosis viruses (NPV) and are representatives of the baculoviruses (Wildy, P. 1971 IN J.L. Melnick, ed., Monographs in Virology, vol. 5, S.Karger, New York).


Sign in / Sign up

Export Citation Format

Share Document