scholarly journals Regulation of Immune Functions by Non-Neuronal Acetylcholine (ACh) via Muscarinic and Nicotinic ACh Receptors

2021 ◽  
Vol 22 (13) ◽  
pp. 6818
Author(s):  
Masato Mashimo ◽  
Yasuhiro Moriwaki ◽  
Hidemi Misawa ◽  
Koichiro Kawashima ◽  
Takeshi Fujii

Acetylcholine (ACh) is the classical neurotransmitter in the cholinergic nervous system. However, ACh is now known to regulate various immune cell functions. In fact, T cells, B cells, and macrophages all express components of the cholinergic system, including ACh, muscarinic, and nicotinic ACh receptors (mAChRs and nAChRs), choline acetyltransferase, acetylcholinesterase, and choline transporters. In this review, we will discuss the actions of ACh in the immune system. We will first briefly describe the mechanisms by which ACh is stored in and released from immune cells. We will then address Ca2+ signaling pathways activated via mAChRs and nAChRs on T cells and B cells, highlighting the importance of ACh for the function of T cells, B cells, and macrophages, as well as its impact on innate and acquired (cellular and humoral) immunity. Lastly, we will discuss the effects of two peptide ligands, secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) and hippocampal cholinergic neurostimulating peptide (HCNP), on cholinergic activity in T cells. Overall, we stress the fact that ACh does not function only as a neurotransmitter; it impacts immunity by exerting diverse effects on immune cells via mAChRs and nAChRs.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Elizabeth Chavez ◽  
...  

Introduction: Classic Hodgkin lymphoma (CHL) features a unique crosstalk between malignant cells and different types of normal immune cells in the tumor-microenvironment (TME). On the basis of histomorphologic and immunophenotypic features of the malignant Hodgkin and Reed-Sternberg (HRS) cells and infiltrating immune cells, four histological subtypes of CHL are recognized: Nodular sclerosing (NS), Mixed cellularity, Lymphocyte-rich (LR) and Lymphocyte-depleted CHL. Recently, our group described the high abundance of various types of immunosuppressive CD4+ T cells including LAG3+ and/or CTLA4+ cells in the TME of CHL using single cell RNA sequencing (scRNAseq). However, the TME of LR-CHL has not been well characterized due to the rarity of the disease. In this study, we aimed at characterizing the immune cell profile of LR-CHL at single cell resolution. METHODS: We performed scRNAseq on cell suspensions collected from lymph nodes of 28 primary CHL patients, including 11 NS, 9 MC and 8 LR samples, with 5 reactive lymph nodes (RLN) serving as normal controls. We merged the expression data from all cells (CHL and RLN) and performed batch correction and normalization. We also performed single- and multi-color immunohistochemistry (IHC) on tissue microarray (TMA) slides from the same patients. In addition, an independent validation cohort of 31 pre-treatment LR-CHL samples assembled on a TMA, were also evaluated by IHC. Results: A total of 23 phenotypic cell clusters were identified using unsupervised clustering (PhenoGraph). We assigned each cluster to a cell type based on the expression of genes described in published transcriptome data of sorted immune cells and known canonical markers. While most immune cell phenotypes were present in all pathological subtypes, we observed a lower abundance of regulatory T cells (Tregs) in LR-CHL in comparison to the other CHL subtypes. Conversely, we found that B cells were enriched in LR-CHL when compared to the other subtypes and specifically, all four naïve B-cell clusters were quantitatively dominated by cells derived from the LR-CHL samples. T follicular helper (TFH) cells support antibody response and differentiation of B cells. Our data show the preferential enrichment of TFH in LR-CHL as compared to other CHL subtypes, but TFH cells were still less frequent compared to RLN. Of note, Chemokine C-X-C motif ligand 13 (CXCL13) was identified as the most up-regulated gene in LR compared to RLN. CXCL13, which is a ligand of C-X-C motif receptor 5 (CXCR5) is well known as a B-cell attractant via the CXCR5-CXCL13 axis. Analyzing co-expression patterns on the single cell level revealed that the majority of CXCL13+ T cells co-expressed PD-1 and ICOS, which is known as a universal TFH marker, but co-expression of CXCR5, another common TFH marker, was variable. Notably, classical TFH cells co-expressing CXCR5 and PD-1 were significantly enriched in RLN, whereas PD-1+ CXCL13+ CXCR5- CD4+ T cells were significantly enriched in LR-CHL. These co-expression patterns were validated using flow cytometry. Moreover, the expression of CXCR5 on naïve B cells in the TME was increased in LR-CHL compared to the other CHL subtypes We next sought to understand the spatial relationship between CXCL13+ T cells and malignant HRS cells. IHC of all cases revealed that CXCL13+ T cells were significantly enriched in the LR-CHL TME compared to other subtypes of CHL, and 46% of the LR-CHL cases showed CXCL13+ T cell rosettes closely surrounding HRS cells. Since PD-1+ T cell rosettes are known as a specific feature of LR-CHL, we confirmed co-expression of PD-1 in the rosetting cells by IHC in these cases. Conclusions: Our results reveal a unique TME composition in LR-CHL. LR-CHL seems to be distinctly characterized among the CHL subtypes by enrichment of CXCR5+ naïve B cells and CD4+ CXCL13+ PD-1+ T cells, indicating the importance of the CXCR5-CXCL13 axis in the pathogenesis of LR-CHL. Figure Disclosures Savage: BeiGene: Other: Steering Committee; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy. Scott:Janssen: Consultancy, Research Funding; Celgene: Consultancy; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; Abbvie: Consultancy; AstraZeneca: Consultancy. Steidl:AbbVie: Consultancy; Roche: Consultancy; Curis Inc: Consultancy; Juno Therapeutics: Consultancy; Bayer: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eirini Moysi ◽  
Perla M. Del Rio Estrada ◽  
Fernanda Torres-Ruiz ◽  
Gustavo Reyes-Terán ◽  
Richard A. Koup ◽  
...  

CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination.


2021 ◽  
Vol 9 (2) ◽  
pp. e1125
Author(s):  
Rui Li ◽  
Thomas Francis Tropea ◽  
Laura Rosa Baratta ◽  
Leah Zuroff ◽  
Maria E. Diaz-Ortiz ◽  
...  

Background and ObjectivesThere has been growing interest in potential roles of the immune system in the pathogenesis of Parkinson disease (PD). The aim of the current study was to comprehensively characterize phenotypic and functional profiles of circulating immune cells in patients with PD vs controls.MethodsPeripheral blood was collected from patients with PD and age- and sex-matched neurologically normal controls (NCs) in 2 independent cohorts (discovery and validation). Comprehensive multicolor flow cytometry was performed on whole blood leukocytes and peripheral blood mononuclear cells to characterize different immune subsets and their ex vivo responses.ResultsThe discovery cohort included 17 NCs and 12 participants with PD, and the validation cohort included 18 NCs and 18 participants with PD. Among major immune cell types, B cells appeared to be preferentially affected in PD. Proliferating B cell counts were decreased in patients with PD compared with controls. Proportions of B-cell subsets with regulatory capacity such as transitional B cells were preferentially reduced in the patients with PD, whereas proportions of proinflammatory cytokine-producing B cells increased, resulting in a proinflammatory shift of their B-cell functional cytokine responses. Unsupervised principal component analysis revealed increased expression of TNFα and GM-CSF by both B cells and T cells of patients with PD. In addition, levels of follicular T cells, an important B-cell helper T-cell population, decreased in the patients with PD, correlating with their B-cell abnormality.DiscussionOur findings define a novel signature of peripheral immune cells and implicate aberrant Tfh:B-cell interactions in patients with PD.


2019 ◽  
Author(s):  
Juliana C. Wortman ◽  
Ting-Fang He ◽  
Shawn Solomon ◽  
Robert Z. Zhang ◽  
Anthony Rosario ◽  
...  

AbstractWhile the density of tumor-infiltrating lymphocytes (TILs) is now well known to correlate with clinical outcome, the clinical significance of spatial distribution of TILs is not well characterized. We have developed novel statistical techniques (including fractal dimension differences, a hotspot analysis, a box counting method that we call ‘occupancy’ and a way to normalize cell density that we call ‘thinning’) to analyze the spatial distribution (at different length scales) of various types of TILs in triple negative breast tumors. Consistent with prior reports, the density of CD20+ B cells within tumors is not correlated with clinical outcome. However, we found that their spatial distribution differs significantly between good clinical outcome (no recurrence within at least 5 years of diagnosis) and poor clinical outcome (recurrence with 3 years of diagnosis). Furthermore, CD20+ B cells are more spatially dispersed in good outcome tumors and are more likely to infiltrate into cancer cell islands. Lastly, we found significant correlation between the spatial distributions of CD20+ B cells and CD8+ (cytotoxic) T cells (as well as CD3+ T cells), regardless of outcome. These results highlight the significance of the spatial distribution of TILs, especially B cells, within tumors.Significance StatementImmune cells can fight cancer. For example, a patient has a good prognosis when a high density of killer T cells, a type of immune cell that can kill cancer cells, infiltrates into a tumor. However, there is no clear association between prognosis and the density of B cells, another type of immune cell, in a tumor. We developed several statistical techniques to go beyond cell density and look at the spatial distribution, i.e., the pattern or arrangement of immune cells, in tumors that have been removed from patients with triple negative breast cancer. We find that B cells and killer T cells tend to be more spread out in the tumors of patients whose cancer did not recur.


2019 ◽  
Vol 317 (1) ◽  
pp. H190-H200 ◽  
Author(s):  
Christina Alter ◽  
Zhaoping Ding ◽  
Ulrich Flögel ◽  
Jürgen Scheller ◽  
Jürgen Schrader

Although the cardioprotective effect of adenosine is undisputed, the role of the adenosine A2breceptor (A2bR) in ischemic cardiac remodeling is not defined. In this study we aimed to unravel the role A2bR plays in modulating the immune response and the healing mechanisms after myocardial infarction. Genetic and pharmacological (PSB603) inactivation of A2bR as well as activation of A2bR with BAY60-6583 does not alter cardiac remodeling of the infarcted (50-min left anterior descending artery occlusion/reperfusion) murine heart. Flow cytometry of immune cell subsets identified a significant increase in B cells, NK cells, CD8 and CD4 T cells, as well as FoxP3-expressing regulatory T cells in the injured heart in A2bR-deficient mice. Analysis of T-cell function revealed that expression and secretion of interleukin (IL)-2, interferon (IFN)γ, and tumor necrosis factor (TNF)α by T cells is under A2bR control. In addition, we found substantial cellular heterogeneity in the response of immune cells and cardiomyocytes to A2bR deficiency: while in the absence of A2bR, expression of IL-6 was greatly reduced in cardiomyocytes and immune cells except T cells, and expression of IL-1β was strongly reduced in cardiomyocytes, granulocytes, and B cells as determined by quantitative PCR. Our findings indicate that A2bR signaling in the ischemic heart triggers substantial changes in cardiac immune cell composition of the lymphoid lineage and induces a profound cell type-specific downregulation of IL-6 and IL-1β. This suggests the presence of a targetable adenosine–A2bR–IL-6-axis triggered by adenosine formed by the ischemic heart.NEW & NOTEWORTHY Genetic deletion and pharmacological inactivation/activation of A2bR does not alter cardiac remodeling after MI but is associated by compensatory upregulation of various pro- and anti-inflammatory immune cell subsets (B cells, NK cells, CD8 and CD4 T cells, regulatory T cells). In the inflamed heart, A2bR modulates the expression of IL-2, IFNγ, TNFα in T cells and of IL-6 in cardiomyocytes, monocytes, granulocytes and B cells. This suggests an important adenosine–IL-6 axis, which is controlled by A2bR via local adenosine.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Juliana Hofstatter Azambuja ◽  
Nils Ludwig ◽  
Saigopalakrishna Yerneni ◽  
Aparna Rao ◽  
Elizandra Braganhol ◽  
...  

Abstract Background Glioblastoma is one of the most immunosuppressive human tumors. Emerging data suggest that glioblastoma-derived exosomes (GBex) reprogram the tumor microenvironment into a tumor-promoting milieu by mechanisms that not yet understood. Methods Exosomes were isolated from supernatants of glioblastoma cell lines by size exclusion chromatography. The GBex endosomal origin, size, protein cargos, and ex vivo effects on immune cell functions were determined. GBex were injected intravenously into mice to evaluate their ability to in vivo modulate normal immune cell subsets. Results GBex carried immunosuppressive proteins, including FasL, TRAIL, CTLA-4, CD39, and CD73, but contained few immunostimulatory proteins. GBex co-incubated with primary human immune cells induced simultaneous activation of multiple molecular pathways. In CD8+ T cells, GBex suppressed TNF-α and INF-γ release and mediated apoptosis. GBex suppressed natural killer (NK) and CD4+ T-cell activation. GBex activated the NF-κB pathway in macrophages and promoted their differentiation into M2 cells. Inhibition of the NF-κB pathway in macrophages reversed the GBex-mediated effects. GBex-driven reprogramming of macrophages involved the release of soluble factors that promoted tumor proliferation in vitro. In mice injected with GBex, the frequency of splenic CD8+ T cells, NK cells, and M1-like macrophages was reduced, while that of naïve and M2-like macrophages increased (P < .05). Conclusions GBex reprogrammed functions of all types of immune cells in vitro and altered their frequency in vivo. By creating and sustaining a highly immunosuppressive environment, GBex play a key role in promoting tumor progression.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Henrique Borges da Silva ◽  
Raíssa Fonseca ◽  
José M. Alvarez ◽  
Maria Regina D’Império Lima

Although it has been established that effector memory CD4+T cells play an important role in the protective immunity against chronic infections, little is known about the exact mechanisms responsible for their functioning and maintenance, as well as their effects on innate immune cells. Here we review recent data on the role of IFN-γpriming as a mechanism affecting both innate immune cells and effector memory CD4+T cells. Suboptimal concentrations of IFN-γare seemingly crucial for the optimization of innate immune cell functions (including phagocytosis and destruction of reminiscent pathogens), as well as for the survival and functioning of effector memory CD4+T cells. Thus, IFN-γpriming can thus be considered an important bridge between innate and adaptive immunity.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jaehong Kim

Recent findings show that the metabolic status of immune cells can determine immune responses. Metabolic reprogramming between aerobic glycolysis and oxidative phosphorylation, previously speculated as exclusively observable in cancer cells, exists in various types of immune and stromal cells in many different pathological conditions other than cancer. The microenvironments of cancer, obese adipose, and wound-repairing tissues share common features of inflammatory reactions. In addition, the metabolic changes in macrophages and T cells are now regarded as crucial for the functional plasticity of the immune cells and responsible for the progression and regression of many pathological processes, notably cancer. It is possible that metabolic changes in the microenvironment induced by other cellular components are responsible for the functional plasticity of immune cells. This review explores the molecular mechanisms responsible for metabolic reprogramming in macrophages and T cells and also provides a summary of recent updates with regard to the functional modulation of the immune cells by metabolic changes in the microenvironment, notably the tumor microenvironment.


2020 ◽  
Author(s):  
Rajagopalan Lakshmi Narasimhan ◽  
Allison A. Throm ◽  
Jesvin Joy Koshy ◽  
Keith Metelo Raul Saldanha ◽  
Harikrishnan Chandranpillai ◽  
...  

AbstractInflammatory bowel disease (IBD) is a complex, chronic inflammatory disease of the gastrointestinal tract with subtypes Crohn’s disease (CD) and ulcerative colitis (UC). While evidence indicates IBD is characterized by alterations in the composition and abundance of the intestinal microbiome, the challenge remains to specify bacterial species and their metabolites associated with IBD pathogenesis. By the integration of microbiome multi-omics data and computational methods, we provide analyses and methods for the first time to identify microbiome species and their metabolites that are associated with the human intestine mucosal immune response in patients with CD and UC at a systems level. First, we identified seven gut bacterial species and seventeen metabolites that are significantly associated with Th17 cellular differentiation and immunity in patients with active CD by comparing with those obtained in inactive CD and non-IBD controls. The seven species are Ruminococcus gnavus, Escherichia coli, Lachnospiraceae bacterium, Clostridium hathewayi, Bacteroides faecis, Bacteroides vulgatus, and Akkermansia muciniphila, and a few associated metabolites include the secondary bile acid lithocholate and three short-chain fatty acids (SCFAs): propionate, butyrate, and caproate. We next systematically characterized potential mechanistic relationships between the Th17-involved metabolites and bacterial species and further performed differential abundance analysis for both microbiome species and their metabolites in CD and UC relative to non-IBD controls with their metagenomic and metabolomic data. Based on the deconvolution of immune cell compositions from host intestinal bulk RNA-seq, we investigated changes in immune cell composition and abundance in CD and UC in comparison to non-IBD controls. Finally, we further extended our species and metabolite associations with immune cells from Th17 and Th2 cells to B cells, plasma B cells, plasmablasts, CD4+ T cells, and CD8+ T cells. While a set of associations of immune cells with bacterial species and metabolites was supported by published evidence, the new findings in this work will help to furthering our understanding of immune responses and pathogenesis in IBD.


2021 ◽  
Vol 14 ◽  
pp. 175628642110076
Author(s):  
Stefanie Haase ◽  
Ralf A. Linker

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterised pathologically by demyelination, gliosis, neuro-axonal damage and inflammation. Despite intense research, the underlying pathomechanisms driving inflammatory demyelination in MS still remain incompletely understood. It is thought to be caused by an autoimmune response towards CNS self-antigens in genetically susceptible individuals, assuming autoreactive T cells as disease-initiating immune cells. Yet, B cells were recognized as crucial immune cells in disease pathology, including antibody-dependent and independent effects. Moreover, myeloid cells are important contributors to MS pathology, and it is becoming increasingly evident that different cell types act in concert during MS immunopathology. This is supported by the finding that the beneficial effects of actual existing disease-modifying therapies cannot be attributed to one single immune cell-type, but rather involve immunological cooperation. The current strategy of MS therapies thus aims to shift the immune cell repertoire from a pro-inflammatory towards an anti-inflammatory phenotype, involving regulatory T and B cells and anti-inflammatory macrophages. Although no existing therapy actually exists that directly induces an enhanced regulatory immune cell pool, numerous studies identified potential net effects on these cell types. This review gives a conceptual overview on T cells, B cells and myeloid cells in the immunopathology of relapsing-remitting MS and discusses potential contributions of actual disease-modifying therapies on these immune cell phenotypes.


Sign in / Sign up

Export Citation Format

Share Document