scholarly journals Identification of the Capsicum baccatum NLR Protein CbAR9 Conferring Disease Resistance to Anthracnose

2021 ◽  
Vol 22 (22) ◽  
pp. 12612
Author(s):  
Seungmin Son ◽  
Soohong Kim ◽  
Kyong Sil Lee ◽  
Jun Oh ◽  
Inchan Choi ◽  
...  

Anthracnose is caused by Colletotrichum species and is one of the most virulent fungal diseases affecting chili pepper (Capsicum) yield globally. However, the noble genes conferring resistance to Colletotrichum species remain largely elusive. In this study, we identified CbAR9 as the causal locus underlying the large effect quantitative trait locus CcR9 from the anthracnose-resistant chili pepper variety PBC80. CbAR9 encodes a nucleotide-binding and leucine-rich repeat (NLR) protein related to defense-associated NLRs in several other plant species. CbAR9 transcript levels were induced dramatically after Colletotrichum capsici infection. To explore the biological function, we generated transgenic Nicotiana benthamiana lines overexpressing CbAR9, which showed enhanced resistance to C. capsici relative to wild-type plants. Transcript levels of pathogenesis-related (PR) genes increased markedly in CbAR9-overexpressing N. benthamiana plants. Moreover, resistance to anthracnose and transcript levels of PR1 and PR2 were markedly reduced in CbAR9-silenced chili pepper fruits after C. capsici infection. Our results revealed that CbAR9 contributes to innate immunity against C. capsici.

2021 ◽  
Vol 22 (21) ◽  
pp. 11423
Author(s):  
Chunxin Liu ◽  
Yiyao Zhang ◽  
Yinxiao Tan ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
...  

Phytophthora infestans (P. infestans) recently caused epidemics of tomato late blight. Our study aimed to identify the function of the SlMYBS2 gene in response to tomato late blight. To further investigate the function of SlMYBS2 in tomato resistance to P. infestans, we studied the effects of SlMYBS2 gene knock out. The SlMYBS2 gene was knocked out by CRISPR-Cas9, and the resulting plants (SlMYBS2 gene knockout, slmybs2-c) showed reduced resistance to P. infestans, accompanied by increases in the number of necrotic cells, lesion sizes, and disease index. Furthermore, after P. infestans infection, the expression levels of pathogenesis-related (PR) genes in slmybs2-c plants were significantly lower than those in wild-type (AC) plants, while the number of necrotic cells and the accumulation of reactive oxygen species (ROS) were higher than those in wild-type plants. Taken together, these results indicate that SlMYBS2 acts as a positive regulator of tomato resistance to P. infestans infection by regulating the ROS level and the expression level of PR genes.


2004 ◽  
Vol 17 (6) ◽  
pp. 623-632 ◽  
Author(s):  
Ken-Taro Sekine ◽  
Ashis Nandi ◽  
Takeaki Ishihara ◽  
Shu Hase ◽  
Masato Ikegami ◽  
...  

The Arabidopsis thaliana SSI2 gene encodes a plastid-localized stearoyl-ACP desaturase. The recessive ssi2 mutant allele confers constitutive accumulation of the pathogenesis-related-1 (PR-1) gene transcript and salicylic acid (SA), and enhanced resistance to bacterial and oomycete pathogens. In addition, the ssi2 mutant is a dwarf and spontaneously develops lesions containing dead cells. Here, we show that the ssi2 mutant also confers enhanced resistance to Cucumber mosaic virus (CMV). Compared with the wild-type plant, viral multiplication and systemic spread were diminished in the ssi2 mutant plant. However, unlike the ssi2-conferred resistance to bacterial and oomycete pathogens, the ssi2-conferred enhanced resistance to CMV was retained in the SA-deficient ssi2 nahG plant. In addition, SA application was not effective in limiting CMV multiplication and systemic spread in the CMV-susceptible wild-type plant. The acd1, acd2, and cpr5 mutants which, like the ssi2 mutant, accumulate elevated SA levels, constitutively express the PR-1 gene, spontaneously develop lesions containing dead cells, and are dwarfs, are, however, fully susceptible to CMV. Our results suggest that dwarfing, cell death, and constitutive activation of SA signaling are not important for the ssi2-conferred enhanced resistance to CMV. However, the sfd1 and sfd4 mutations, which affect lipid metabolism, suppress the ssi2-conferred enhanced resistance to CMV, thus implicating a lipid or lipids in the ssi2-conferred resistance to CMV. Interestingly, the ssi2-conferred resistance to CMV was compromised in the ssi2 eds5 plant, suggesting the involvement of an SA-independent, EDS5-dependent mechanism in the ssi2-conferred resistance to CMV.


2010 ◽  
Vol 23 (3) ◽  
pp. 340-351 ◽  
Author(s):  
Madhumati Mukherjee ◽  
Katherine E. Larrimore ◽  
Naushin J. Ahmed ◽  
Tyler S. Bedick ◽  
Nadia T. Barghouthi ◽  
...  

The ascorbic acid (AA)-deficient Arabidopsis thaliana vtc1-1 mutant exhibits increased resistance to the virulent bacterial pathogen Pseudomonas syringae. This response correlates with heightened levels of salicylic acid (SA), which induces antimicrobial pathogenesis-related (PR) proteins. To determine if SA-mediated, enhanced disease resistance is a general phenomenon of AA deficiency, to elucidate the signal that stimulates SA synthesis, and to identify the biosynthetic pathway through which SA accumulates, we studied the four AA-deficient vtc1-1, vtc2-1, vtc3-1, and vtc4-1 mutants. We also studied double mutants defective in the AA-biosynthetic gene VTC1 and the SA signaling pathway genes PAD4, EDS5, and NPR1, respectively. All vtc mutants were more resistant to P. syringae than the wild type. With the exception of vtc4-1, this correlated with constitutively upregulated H2O2, SA, and messenger RNA levels of PR genes. Double mutants exhibited decreased SA levels and enhanced susceptibility to P. syringae compared with the wild type, suggesting that vtc1-1 requires functional PAD4, EDS5, and NPR1 for SA biosynthesis and pathogen resistance. We suggest that AA deficiency causes constitutive priming through a buildup of H2O2 that stimulates SA accumulation, conferring enhanced disease resistance in vtc1-1, vtc2-1, and vtc3-1, whereas vtc4-1 might be sensitized to H2O2 and SA production after infection.


2020 ◽  
Vol 21 (14) ◽  
pp. 5147
Author(s):  
Wenjun Gong ◽  
Bingcong Li ◽  
Baihong Zhang ◽  
Wenli Chen

Psm ES4326/AvrRpt2 (AvrRpt2) was widely used as the reaction system of hypersensitive response (HR) in Arabidopsis. The study showed that in npr1 (GFP-ATG8a), AvrRpt2 was more effective at inducing the production of autophagosome and autophagy flux than that in GFP-ATG8a. The mRNA expression of ATG1, ATG6 and ATG8a were more in npr1 during the early HR. Based on transcriptome data analysis, enhanced disease susceptibility 1 (EDS1) was up-regulated in wild-type (WT) but was not induced in atg4a4b (ATG4 deletion mutant) during AvrRpt2 infection. Compared with WT, atg4a4b had higher expression of salicylic acid glucosyltransferase 1 (SGT1) and isochorismate synthase 1 (ICS1); but less salicylic acid (SA) in normal condition and the same level of free SA during AvrRpt2 infection. These results suggested that the consumption of free SA should be occurred in atg4a4b. AvrRpt2 may trigger the activation of Toll/Interleukin-1 receptor (TIR)-nucleotide binding site (NB)-leucine rich repeat (LRR)—TIR-NB-LRR—to induce autophagy via EDS1, which was inhibited by nonexpressor of PR genes 1 (NPR1). Moreover, high expression of NPR3 in atg4a4b may accelerate the degradation of NPR1 during AvrRpt2 infection.


2021 ◽  
Vol 22 (14) ◽  
pp. 7672
Author(s):  
Seungmin Son ◽  
Soohong Kim ◽  
Kyong Sil Lee ◽  
Jun Oh ◽  
Inchan Choi ◽  
...  

Chili pepper (Capsicum annuum) is an important fruit and spice used globally, but its yield is seriously threatened by anthracnose. Capsicum baccatum (C. baccatum) is particularly valuable as it carries advantageous disease resistance genes. However, most of the genes remain to be identified. In this study, we identified the C. baccatum-specific gene CbCN, which encodes a truncated nucleotide-binding and leucine-rich repeat protein in the anthracnose resistant chili pepper variety PBC80. The transcription of CbCN was greater in PBC80 than it was in the susceptible variety An-S after Colletotrichum acutatum inoculation. In order to investigate the biological function of CbCN, we generated transgenic tobacco lines constitutively expressing CbCN. Notably, CbCN-overexpressing transgenic plants exhibited enhanced resistance to C. acutatum compared to wild-type plants. Moreover, the expression of pathogenesis-related (PR) genes was remarkably increased in a CbCN-overexpressing tobacco plants. In order to confirm these results in chili pepper, we silenced the CbCN gene using the virus-induced gene silencing system. The anthracnose resistance and expressions of PR1, PR2, and NPR1 were significantly reduced in CbCN-silenced chili peppers after C. acutatum inoculations. These results indicate that CbCN enhances the innate immunity against anthracnose caused by C. acutatum by regulating defense response genes.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongmei Ma ◽  
Bei Liu ◽  
Lingqiao Ge ◽  
Yinyin Weng ◽  
Xiaohui Cao ◽  
...  

Abstract Background Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds. However, the underlying molecular mechanisms of flowering time regulation in alfalfa are not well understood. Results In this study, an early-flowering alfalfa genotype 80 and a late-flowering alfalfa genotype 195 were characterized for the flowering phenotype. Our analysis revealed that the lower jasmonate (JA) content in new leaves and the downregulation of JA biosynthetic genes (i.e. lipoxygenase, the 12-oxophytodienoate reductase-like protein, and salicylic acid carboxyl methyltransferase) may play essential roles in the early-flowering phenotype of genotype 80. Further research indicated that genes encode pathogenesis-related proteins [e.g. leucine rich repeat (LRR) family proteins, receptor-like proteins, and toll-interleukin-like receptor (TIR)-nucleotide-binding site (NBS)-LRR class proteins] and members of the signaling receptor kinase family [LRR proteins, kinases domain of unknown function 26 (DUF26) and wheat leucine-rich repeat receptor-like kinase10 (LRK10)-like kinases] are related to early flowering in alfalfa. Additionally, those involved in secondary metabolism (2-oxoglutarate/Fe (II)-dependent dioxygenases and UDP-glycosyltransferase) and the proteasome degradation pathway [really interesting new gene (RING)/U-box superfamily proteins and F-box family proteins] are also related to early flowering in alfalfa. Conclusions Integrated phenotypical, physiological, and transcriptomic analyses demonstrate that hormone biosynthesis and signaling pathways, pathogenesis-related genes, signaling receptor kinase family genes, secondary metabolism genes, and proteasome degradation pathway genes are responsible for the early flowering phenotype in alfalfa. This will provide new insights into future studies of flowering time in alfalfa and inform genetic improvement strategies for optimizing this important trait.


2021 ◽  
Vol 22 (15) ◽  
pp. 8354
Author(s):  
Zalán Czékus ◽  
András Kukri ◽  
Kamirán Áron Hamow ◽  
Gabriella Szalai ◽  
Irma Tari ◽  
...  

The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.


2021 ◽  
Vol 22 (8) ◽  
pp. 3986
Author(s):  
Xue Wang ◽  
Qiumin Chen ◽  
Jingnan Huang ◽  
Xiangnan Meng ◽  
Na Cui ◽  
...  

Cucumber powdery mildew caused by Sphaerotheca fuliginea is a leaf disease that seriously affects cucumber’s yield and quality. This study aimed to report two nucleotide-binding site-leucine-rich repeats (NBS-LRR) genes CsRSF1 and CsRSF2, which participated in regulating the resistance of cucumber to S. fuliginea. The subcellular localization showed that the CsRSF1 protein was localized in the nucleus, cytoplasm, and cell membrane, while the CsRSF2 protein was localized in the cell membrane and cytoplasm. In addition, the transcript levels of CsRSF1 and CsRSF2 were different between resistant and susceptible cultivars after treatment with exogenous substances, such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), ethephon (ETH), gibberellin (GA) and hydrogen peroxide (H2O2). The expression analysis showed that the transcript levels of CsRSF1 and CsRSF2 were correlated with plant defense response against S. fuliginea. Moreover, the silencing of CsRSF1 and CsRSF2 impaired host resistance to S. fuliginea, but CsRSF1 and CsRSF2 overexpression improved resistance to S. fuliginea in cucumber. These results showed that CsRSF1 and CsRSF2 genes positively contributed to the resistance of cucumber to S. fuliginea. At the same time, CsRSF1 and CsRSF2 genes could also regulate the expression of defense-related genes. The findings of this study might help enhance the resistance of cucumber to S. fuliginea.


Author(s):  
Kazuho Isono ◽  
Ryo Tsukimoto ◽  
Satoshi Iuchi ◽  
Akihisa Shinozawa ◽  
Izumi Yotsui ◽  
...  

Abstract Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screening for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L- but not S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2, and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1–1 mutants was similar to that of the wild type. Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the wild type. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1)—accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins—were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not bZIP28, resulting in initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER–Golgi vesicle tethering.


Sign in / Sign up

Export Citation Format

Share Document