scholarly journals Angiotensin-(1-7)—A Potential Remedy for AKI: Insights Derived from the COVID-19 Pandemic

2021 ◽  
Vol 10 (6) ◽  
pp. 1200
Author(s):  
Samuel N. Heyman ◽  
Thomas Walther ◽  
Zaid Abassi

Membrane-bound angiotensin converting enzyme (ACE) 2 serves as a receptor for the Sars-CoV-2 spike protein, permitting viral attachment to target host cells. The COVID-19 pandemic brought into light ACE2, its principal product angiotensin (Ang) 1-7, and the G protein-coupled receptor for the heptapeptide (MasR), which together form a still under-recognized arm of the renin–angiotensin system (RAS). This axis counteracts vasoconstriction, inflammation and fibrosis, generated by the more familiar deleterious arm of RAS, including ACE, Ang II and the ang II type 1 receptor (AT1R). The COVID-19 disease is characterized by the depletion of ACE2 and Ang-(1-7), conceivably playing a central role in the devastating cytokine storm that characterizes this disorder. ACE2 repletion and the administration of Ang-(1-7) constitute the therapeutic options currently tested in the management of severe COVID-19 disease cases. Based on their beneficial effects, both ACE2 and Ang-(1-7) have also been suggested to slow the progression of experimental diabetic and hypertensive chronic kidney disease (CKD). Herein, we report a further step undertaken recently, utilizing this type of intervention in the management of evolving acute kidney injury (AKI), with the expectation of renal vasodilation and the attenuation of oxidative stress, inflammation, renal parenchymal damage and subsequent fibrosis. Most outcomes indicate that triggering the ACE2/Ang-(1-7)/MasR axis may be renoprotective in the setup of AKI. Yet, there is contradicting evidence that under certain conditions it may accelerate renal damage in CKD and AKI. The nature of these conflicting outcomes requires further elucidation.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ava Soltani Hekmat ◽  
Kazem Javanmardi

Coronavirus disease 2019 (COVID-19) can occur due to contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has no confined treatment and, consequently, has high hospitalization and mortality rates. Moreover, people who contract COVID-19 present systemic inflammatory spillover. It is now known that COVID-19 pathogenesis is linked to the renin-angiotensin system (RAS). COVID-19 invades host cells via the angiotensin-converting enzyme 2 (ACE2) receptor—as such, an individual’s susceptibility to COVID-19 increases alongside the upregulation of this receptor. COVID-19 has also been associated with interstitial pulmonary fibrosis, which leads to acute respiratory distress, cardiomyopathy, and shock. These outcomes are thought to result from imbalances in angiotensin (Ang) II and Ang-(1-7)/alamandine activity. ACE2, Ang-(1-7), and alamandine have potent anti-inflammatory properties, and some SARS-CoV-2 patients exhibit high levels of ACE2 and Ang-(1-7). This phenomenon could indicate a failing physiological response to prevent or reduce the severity of inflammation-mediated pulmonary injuries. Alamandine, which is another protective component of the RAS, has several health benefits owing to its antithrombogenic, anti-inflammatory, and antifibrotic characteristics. Alamandine alleviates pulmonary fibrosis via the Mas-related G protein-coupled receptor D (MrgD). Thus, a better understanding of this pathway could uncover novel pharmacological strategies for altering proinflammatory environments within the body. Following such strategies could inhibit fibrosis after SARS-CoV-2 infection and, consequently, prevent COVID-19.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Lai-Jiang Chen ◽  
Ran Xu ◽  
Hui-Min Yu ◽  
Qing Chang ◽  
Jiu-Chang Zhong

The renin-angiotensin aldosterone system (RAAS) plays a pivotal role in the development of hypertension. Angiotensin converting enzyme 2 (ACE2), which primarily metabolises angiotensin (Ang) II to generate the beneficial heptapeptide Ang-(1-7), serves as a negative regulator of the RAAS. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardiovascular protective peptide. The physiological effects of Apelin are exerted through binding to its receptor APJ, a seven-transmembrane G protein-coupled receptor that shares significant homology with the Ang II type 1 receptor (AT1R). The deregulation of microRNAs, a class of short and small noncoding RNAs, has been shown to involve cardiovascular remodeling and pathogenesis of hypertension via the activation of the Ang II/AT1R pathway. MicroRNAs are linked with modulation of the ACE2/Apelin signaling, which exhibits beneficial effects in the cardiovascular system and hypertension. The ACE2-coupled crosstalk among the RAAS, the Apelin system, and microRNAs provides an important mechanistic insight into hypertension. This paper focuses on what is known about the ACE2/Apelin signaling and its biological roles, paying particular attention to interactions and crosstalk among the ACE2/Apelin signaling, microRNAs, and hypertension, aiming to facilitate the exploitation of new therapeutic medicine to control hypertension.


2020 ◽  
Vol 134 (19) ◽  
pp. 2581-2595
Author(s):  
Qiuhong Li ◽  
Maria B. Grant ◽  
Elaine M. Richards ◽  
Mohan K. Raizada

Abstract The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin–angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein–coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yongjun Zhu ◽  
Hongwang Cui ◽  
Jie Lv ◽  
Haiqin Liang ◽  
Yanping Zheng ◽  
...  

AbstractAbnormal renin-angiotensin system (RAS) activation plays a critical role in the initiation and progression of chronic kidney disease (CKD) by directly mediating renal tubular cell apoptosis. Our previous study showed that necroptosis may play a more important role than apoptosis in mediating renal tubular cell loss in chronic renal injury rats, but the mechanism involved remains unknown. Here, we investigate whether blocking the angiotensin II type 1 receptor (AT1R) and/or angiotensin II type 2 receptor (AT2R) beneficially alleviates renal tubular cell necroptosis and chronic kidney injury. In an angiotensin II (Ang II)-induced renal injury mouse model, we found that blocking AT1R and AT2R effectively mitigates Ang II-induced increases in necroptotic tubular epithelial cell percentages, necroptosis-related RIP3 and MLKL protein expression, serum creatinine and blood urea nitrogen levels, and tubular damage scores. Furthermore, inhibition of AT1R and AT2R diminishes Ang II-induced necroptosis in HK-2 cells and the AT2 agonist CGP42112A increases the percentage of necroptotic HK-2 cells. In addition, the current study also demonstrates that Losartan and PD123319 effectively mitigated the Ang II-induced increases in Fas and FasL signaling molecule expression. Importantly, disruption of FasL significantly suppressed Ang II-induced increases in necroptotic HK-2 cell percentages, and necroptosis-related proteins. These results suggest that Fas and FasL, as subsequent signaling molecules of AT1R and AT2R, might involve in Ang II-induced necroptosis. Taken together, our results suggest that Ang II-induced necroptosis of renal tubular cell might be involved both AT1R and AT2R and the subsequent expression of Fas, FasL signaling. Thus, AT1R and AT2R might function as critical mediators.


2021 ◽  
Vol 135 (6) ◽  
pp. 725-730
Author(s):  
Alberto Javier Ramos

Abstract Epilepsy is a highly prevalent neurological disease and anti-epileptic drugs (AED) are almost the unique clinical treatment option. A disbalanced brain renin–angiotensin system (RAS) has been proposed in epilepsy and several reports have shown that angiotensin II (Ang II) receptor-1 (ATR1) activation is pro-inflammatory and pro-epileptogenic. In agreement, ATR1 blockage with the repurposed drug losartan has shown benefits in animal models of epilepsy. Processing of Ang II by ACE2 enzyme renders Ang-(1-7), a metabolite that activates the mitochondrial assembly (Mas) receptor (MasR) pathway. MasR activation presents beneficial effects, facilitating vasodilatation, increasing anti-inflammatory and antioxidative responses. In a recent paper published in Clinical Science, Gomes and colleagues (Clin. Sci. (Lond.) (2020) 134, 2263–2277) performed intracerebroventricular (icv) infusion of Ang-(1-7) in animals subjected to the pilocarpine model of epilepsy, starting after the first spontaneous motor seizure (SMS). They showed that this approach reduced the frequency of SMS, restored animal anxiety, increased exploration, and augmented the hippocampal expression of protective catalase enzyme and antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Interestingly, but surprisingly, Gomes and colleagues showed that MasR expression and mTor activity were reduced in the hippocampus of the epileptic Ang-(1-7) treated animals. These results show that Ang-(1-7) administration could represent a new avenue for developing strategies for the management of epilepsy in clinical settings. However, future work is necessary to evaluate the levels of RAS metabolites and the activity of key enzymes in these experimental interventions to completely understand the therapeutic potential of the brain RAS manipulation in epilepsy.


Author(s):  
Jieqiong Wang ◽  
Huiying Zhao ◽  
Youzhong An

Angiotensin converting enzyme 2 (ACE2), a transmembrane glycoprotein, is an important part of the renin-angiotensin system (RAS). In the COVID-19 epidemic, it was found to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). ACE2 maintains homeostasis by inhibiting the Ang II-AT1R axis and activating the Ang I (1-7)-MasR axis, protecting against lung, heart and kidney injury. In addition, ACE2 helps transport amino acids across the membrane. ACE2 sheds from the membrane, producing soluble ACE2 (sACE2). Previous studies have pointed out that sACE2 plays a role in the pathology of the disease, but the underlying mechanism is not yet clear. Recent studies have confirmed that sACE2 can also act as the receptor of SARS-COV-2, mediating viral entry into the cell and then spreading to the infective area. Elevated concentrations of sACE2 are more related to disease. Recombinant human ACE2, an exogenous soluble ACE2, can be used to supplement endogenous ACE2. It may represent a potent COVID-19 treatment in the future. However, the specific administration concentration needs to be further investigated.


2006 ◽  
Vol 290 (3) ◽  
pp. F710-F719 ◽  
Author(s):  
Max C. Liebau ◽  
D. Lang ◽  
J. Böhm ◽  
N. Endlich ◽  
Martin J. Bek ◽  
...  

Experimental and clinical studies impressively demonstrate that angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) significantly reduce proteinuria and retard progression of glomerular disease. The underlying intraglomerular mechanisms are not yet fully elucidated. As podocyte injury constitutes a critical step in the pathogenesis of glomerular proteinuria, beneficial effects of ACEI and ARB may partially result from interference with a local renin-angiotensin system (RAS) in podocytes. The knowledge of expression and function of a local RAS in podocytes is limited. In this study, we demonstrate functional expression of key components of the RAS in differentiated human podocytes: podocytes express mRNA for angiotensinogen, renin, ACE type 1, and the AT1 and AT2 angiotensin receptor subtypes. In Western blot experiments and immunostainings, expression of the AT1 and AT2 receptor was demonstrated both in differentiated human podocytes and in human kidney cortex. ANG II induced a concentration-dependent increase in cytosolic Ca2+ concentration via AT1 receptors in differentiated human podocytes, whereas it did not increase cAMP. Furthermore, ANG II secretion was detected, which was blocked by neither the ACEI captopril nor the renin inhibitor remikiren nor the chymase inhibitor chymostatin. ANG II secretion of podocytes was not increased by mechanical stress. Finally, ANG II was found to increase staurosporine-induced apoptosis in podocytes. We speculate that ACEI and ARB exert their beneficial effects, in part, by interfering with a local RAS in podocytes. Further experiments are required to identify the underlying molecular mechanism(s) of podocyte protection.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Toshihiro Ichiki

Background: Prolyl hydroxylase domain-containing protein (PHD) mediates hydroxylation of hypoxia-inducible factor (HIF)-1α and thereby induces proteasomal degradation of HIF-1α. Inhibition of PHD by hypoxia or hypoxia mimetics such as cobalt chloride (CoCl2) stabilizes HIF-1 and increases the expression of target genes such as vascular endothelial growth factor (VEGF). Although hypoxia activates the systemic renin angiotensin system (RAS), the role of PHD in regulating RAS remains unknown. We examined the effect of PHD inhibition on the expression of angiotensin (Ang) II type 1 receptor (AT1R) and its signaling. Methods and Results: Hypoxia (1% O2), CoCl2 (100-300 μmol/L), and dimethyloxalylglycine (0.25-1.0 mmol/L), all known to inhibit PHD, reduced AT1R expression by 37.7±7.6, 39.6±8.4-69.7±9.9, and 13.4±6.1-25.2±7.0%, respectively (p<0.01) in cultured vascular smooth muscle cell. The same stimuli increased the expression of nuclear HIF-1α and VEGF (p<0.05), suggesting that PHD activity is inhibited. Knockdown of PHD2, a major isoform of PHDs, by RNA interference also reduced AT1R expression by 55.3±6.0% (p<0.01). CoCl2 decreased AT1R mRNA through transcriptional and posttranscriptional mechanisms (p<0.01 and <0.05, respectively). CoCl2 and PHD2 knockdown diminished Ang II-induced ERK phosphorylation (P<0.01). Over-expression of the constitutively active HIF-1α did not impact the AT1R gene promoter activity. Oral administration of CoCl2 (14 mg/kg/day) to C57BL/6J mice receiving Ang II infusion (490 ng/kg/min) for 4 weeks significantly reduced the expression of AT1R in the aorta by 60.9±11.3% (p<0.05) and attenuated coronary perivascular fibrosis by 85% (p<0.01) without affecting blood pressure. However, CoCl2 did not affect Ang II-induced renal interstitial fibrosis. Conclusion: PHD inhibition downregulates AT1R expression independently of HIF-1α, reduces the cellular response to Ang II, and attenuates profibrotic effect of Ang II on the coronary arteries. PHD inhibition may be beneficial for the treatment of cardiovascular diseases, in which activation of RAS plays a critical role.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Orly Leiva ◽  
Khalid M Elased ◽  
Mariana Morris ◽  
Nadja Grobe

There are 26 million adults with chronic kidney disease (CKD) in the U.S. and the incidence continues to increase. It is well documented that the activation of the renin angiotensin system and the elevated formation of angiotensin (Ang) II both contribute to renal pathophysiology in CKD. Emerging evidence suggests that the Ang II degrading protease prolyl carboxypeptidase (PCP) is renoprotective. Thus, we investigated protein expression and activity of renal PCP using immunofluorescence, western blot and mass spectrometry in a mouse model of CKD. Renal injury in male C57Bl6 mice was caused by constriction of the left renal artery using silver clips (2K1C-method). Blood pressure measurements by radiotelemetry revealed a significant increase of 36.1 ± 3.9 mm Hg in 2K1C animals compared with control animals 1 week after clip placement (p<0.0001). Using immunofluorescence and confocal microscopy, PCP was localized in the Bowman’s capsule of the glomerulus and in proximal and distal renal tubules. Western blot analysis showed PCP was significantly reduced in clipped 2K1C kidneys compared to unclipped kidneys of the 2K1C mice or compared to control mice (clipped 0.04 ± 0.02 vs unclipped 0.58 ± 0.16 vs control 0.65 ± 0.18, p < 0.05). In addition, renal PCP enzyme activity was found to be markedly reduced in 2K1C kidneys as assessed by mass spectrometric based enzyme assays (clipped 37.1 ± 4.3 pmol Ang-(1-7)/h/μg vs unclipped 77.3 ± 12.3 pmol Ang-(1-7)/h/μg vs control 120.7 ± 14.7 pmol Ang-(1-7)/h/μg, p < 0.01). In contrast, protein expression of prolyl endopeptidase, another enzyme capable of converting Ang II into Ang-(1-7), was not affected. Notably, renal pathologies were exacerbated in the 2K1C model as revealed by a significant increase in mesangial expansion (clipped 34.6 ± 3.1 vs unclipped 52.1 ± 4.0 vs control 1.2 ± 2.1, p < 0.0001) and renal fibrosis (clipped 57.5 ± 0.9 vs unclipped 33.0 ± 0.7 vs control 3.3 ± 0.2, p < 0.0001). Results suggest that PCP is suppressed in chronic kidney injury and that this downregulation may attenuate renoprotective effects via impaired Ang II degradation by PCP. Therefore, Ang II processing by PCP may have clinical implications in patients with renal pathologies.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jorge F Giani ◽  
Tea Djandjoulia ◽  
Nicholas Fetcher ◽  
Sebastien Fuchs ◽  
Dale M Seth ◽  
...  

Introduction: The responses to chronic angiotensin (Ang) II infusions of gene-targeted mice lacking kidney angiotensin-converting enzyme (ACE), in terms of intrarenal Ang II accumulation, hypertension, sodium and water retention are all blunted or absent. The objective of this study was to determine if these reduced responses were associated with changes in the intrarenal renin-angiotensin system (RAS). METHODS: Mice lacking intrarenal ACE (ACE10/10) were generated by targeted homologous recombination placing the expression of ACE only in macrophages. As a result, these mice have normal circulating ACE levels, but no kidney ACE. Wild-type (WT) mice of the same background (C57Bl/J) served as controls. Mice were subjected to sham-operation or subcutaneous infusion of Ang II for two weeks (n=6-10, 400 ng/kg/min via osmotic minipump). Mean arterial pressure (MAP) was followed by telemetry. At the end of the experiment, the kidneys were collected for analysis. Ang II content was measured by RIA. Renal abundance of ACE, angiotensinogen (AGT) and Ang II receptor type 1 (AT1R) were determined by Western Blot in total kidney homogenates. Results: At baseline, the MAP of WT and ACE 10/10 mice was similar 110 ± 4 mmHg vs. 109 ± 3 mmHg respectively (p>0.05). However, when subjected to chronic Ang II infusions, the hypertensive response was blunted in ACE 10/10 mice (129 ± 6 mmHg) vs. WT (146 ± 5 mmHg; P<0.05). Also, intrarenal Ang II accumulation was lower in ACE10/10 mice (724 ± 81 fmol/g) vs. WT (1130 ± 105 fmol/g, p<0.05). In non-treated mice, intrarenal RAS components analysis revealed that the absence of ACE in ACE10/10 mice was accompanied by a significant reduction in AGT (0.41 ± 0.06) and increased AT1R expression (1.32 ± 0.05) when compared to WT (normalized to 1.00, p<0.05 in both instances). Importantly, after chronic Ang II infusions, AGT, ACE and AT1R expression increased in WT (1.36, 1.26 and 1.17 fold increase respectively compared to non-treated WT, p<0.05) but not in the ACE10/10 mice (1.19, 1.06, 0.89 fold increase respectively compared to non-treated ACE10/10, p>0.05). Conclusion: The blunted hypertension and Ang II accumulation of mice devoid of kidney ACE in response to Ang II infusions is associated with a failed induction of renal AGT and the AT1R.


Sign in / Sign up

Export Citation Format

Share Document