scholarly journals miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro

2020 ◽  
Vol 9 (3) ◽  
pp. 670 ◽  
Author(s):  
Markus Krebs ◽  
Antonio Giovanni Solimando ◽  
Charis Kalogirou ◽  
André Marquardt ◽  
Torsten Frank ◽  
...  

Downregulation of miR-221-3p expression in prostate cancer (PCa) predicted overall and cancer-specific survival of high-risk PCa patients. Apart from PCa, miR-221-3p expression levels predicted a response to tyrosine kinase inhibitors (TKI) in clear cell renal cell carcinoma (ccRCC) patients. Since this role of miR-221-3p was explained with a specific targeting of VEGFR2, we examined whether miR-221-3p regulated VEGFR2 in PCa. First, we confirmed VEGFR2/KDR as a target gene of miR-221-3p in PCa cells by applying Luciferase reporter assays and Western blotting experiments. Although VEGFR2 was mainly downregulated in the PCa cohort of the TCGA (The Cancer Genome Atlas) database, VEGFR2 was upregulated in our high-risk PCa cohort (n = 142) and predicted clinical progression. In vitro miR-221-3p acted as an escape mechanism from TKI in PC3 cells, as displayed by proliferation and apoptosis assays. Moreover, we confirmed that Sunitinib induced an interferon-related gene signature in PC3 cells by analyzing external microarray data and by demonstrating a significant upregulation of miR-221-3p/miR-222-3p after Sunitinib exposure. Our findings bear a clinical perspective for high-risk PCa patients with low miR-221-3p levels since this could predict a favorable TKI response. Apart from this therapeutic niche, we identified a partially oncogenic function of miR-221-3p as an escape mechanism from VEGFR2 inhibition.

2017 ◽  
Vol 43 (6) ◽  
pp. 2405-2419 ◽  
Author(s):  
Changlin Wang ◽  
Licheng Cai ◽  
Jing Liu ◽  
Gang Wang ◽  
Haoming Li ◽  
...  

Background/Aims: MiR-30a-5p, a member of the microRNA-30 family (miR-30), is known to function as a tumor suppressor in several different cancers. However, the expression levels, biological function, and underlying mechanisms of miR-30a-5p in renal cell carcinoma (RCC) remain unclear. Glucose-regulated protein78 (GRP78) is a common cancer biomarker and promotes the growth and survival of cancer cells. The expression of GRP78 has been reported to be modulated by miR-30a in neurons. In this study, the expression profile of miR-30a-5p in clear cell renal cell carcinoma (ccRCC) and its effect on ccRCC through regulating GRP78 expression was investigated. Methods: MiR-30a-5p expression was analyzed using bioinformatic software on open microarray datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and confirmed by quantitative RT-PCR (qRT-PCR) in ccRCC cell lines. Cell proliferation was investigated using CCK-8 and cell count assays. Western blotting, immunohistochemistry, luciferase reporter assays, and flow cytometry were employed to investigate the mechanisms of the effect of miR-30a-5p on ccRCC Results: MiR-30a-5p was down-regulated in ccRCC and related to the clinicopathological factors and prognosis of ccRCC. MiR-30a-5p was found to both suppress the growth of ccRCC cells and promote apoptosis of ccRCC cells in vitro. GRP78 was the direct target gene of miR-30a-5p, and the GRP78 expression was inversely correlated with the expression of miR-30a-5p in vivo and in vitro. The functional studies of GRP78 overexpression or knockdown demonstrated that GRP78 promoted proliferation and anti-apoptosis of ccRCC cells, and the oncogenic activity of GRP78 resulting in by miR-30a-5p overexpression. Conclusion: MiR-30a-5p is a bona fide negative regulator of GRP78 expression, and the anti-tumor activity of miR-30a-5p in ccRCC is due at least in part to down-regulating GRP78 expression and modulating the unfolded protein response (UPR) pathway. Thus, miR-30-GRP78 interaction provides a novel therapeutic candidate target in ccRCC treatment.


2021 ◽  
Vol 21 (04) ◽  
Author(s):  
Minghua Zhang

ABSTRACT This present study explored the functions of lncRNA DANCR on regulating sensitivity to 5-fluorouracil (5- FU) in prostate cancer in vitro. The RT-qPCR examined RNA expressions of LNCRNA DANCR in RWPE-1, VCaP, PC3 and LNCaP cells, which also measured RNA levels of miR-577 in PC3 cells. DANCR was highly expressed in prostate cancer cell lines. 5-FU (0, 1, 5 and 10¼M) treatment induced the decrease of PC3 cell viability and low RNA expressions of DANCR but increased miR-577 in PC3 cells. The luciferase reporter test detected the binding between DNACR and miR- 577 . Interactions between DANCR and miR-577 were examined. Knockdown of DANCR downregulated DANCR and Bcl- 2 RNA expressions but accelerated cell viability and upregulated Bax, which were enhanced by the overexpression of miR- 577. Hence, DANCR might restrain sensitivity of prostate cancer cells to 5-FU by downregulating miR-577


2021 ◽  
Vol 20 ◽  
pp. 153303382198981
Author(s):  
Xin-bo Sun ◽  
Yong-wei Chen ◽  
Qi-sheng Yao ◽  
Xu-hua Chen ◽  
Min He ◽  
...  

Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 257
Author(s):  
Yan Gu ◽  
Mathilda Jing Chow ◽  
Anil Kapoor ◽  
Xiaozeng Lin ◽  
Wenjuan Mei ◽  
...  

Contactin 1 (CNTN1) is a new oncogenic protein of prostate cancer (PC); its impact on PC remains incompletely understood. We observed CNTN1 upregulation in LNCaP cell-derived castration-resistant PCs (CRPC) and CNTN1-mediated enhancement of LNCaP cell proliferation. CNTN1 overexpression in LNCaP cells resulted in enrichment of the CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_3 gene set that facilitates endocrine resistance in breast cancer. The leading-edge (LE) genes (n = 10) of this enrichment consist of four genes with limited knowledge on PC and six genes novel to PC. These LE genes display differential expression during PC initiation, metastatic progression, and CRPC development, and they predict PC relapse following curative therapies at hazard ratio (HR) 2.72, 95% confidence interval (CI) 1.96–3.77, and p = 1.77 × 10−9 in The Cancer Genome Atlas (TCGA) PanCancer cohort (n = 492) and HR 2.72, 95% CI 1.84–4.01, and p = 4.99 × 10−7 in Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 140). The LE gene panel classifies high-, moderate-, and low-risk of PC relapse in both cohorts. Additionally, the gene panel robustly predicts poor overall survival in clear cell renal cell carcinoma (ccRCC, p = 1.13 × 10−11), consistent with ccRCC and PC both being urogenital cancers. Collectively, we report multiple CNTN1-related genes relevant to PC and their biomarker values in predicting PC relapse.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Guo ◽  
Yun-Chuan Sun ◽  
Jian-Qiang Bi ◽  
Xin-Ying He ◽  
Li Xiao

Abstract Background Prostate cancer is one of the most common cancers in the world. The results of treatment after hypofractionated radiotherapy only have been reported from several small randomized clinical trials. Therefore, we conducted a meta-analysis to compare clinical outcomes of hypofractionated radiotherapy versus conventional radiotherapy in the treatment of intermediate- to high-risk localized prostate cancer. Methods Relevant studies were identified through searching related databases till August 2018. Hazard ratio (HR) or risk ratio (RR) with its corresponding 95% confidence interval (CI) was used as pooled statistics for all analyses. Results The meta-analysis results showed that overall survival (HR = 1.12, 95% CI: 0.93–1.35, p = 0.219) and prostate cancer-specific survival (HR = 1.29, 95% CI: 0.42–3.95, p = 0.661) were similar in two groups. The pooled data showed that biochemical failure was RR = 0.90, 95% CI: 0.76–1.07, p = 0.248. The incidence of acute adverse gastrointestinal events (grade ≥ 2) was higher in the hypofractionated radiotherapy (RR = 1.70, 95% CI: 1.12–2.56, p = 0.012); conversely, for late grade ≥ 2 gastrointestinal adverse events, a significant increase in the conventional radiotherapy was found (RR = 0.75, 95% CI: 0.61–0.91, p = 0.003). Acute (RR = 1.01, 95% CI: 0.89–1.15, p = 0.894) and late (RR = 0.98, 95% CI: 0.86–1.10, p = 0.692) genitourinary adverse events (grade ≥ 2) were similar for both treatment groups. Conclusion Results suggest that the efficacy and risk for adverse events are comparable for hypofractionated radiotherapy and conventional radiotherapy in the treatment of intermediate- to high-risk localized prostate cancer.


2013 ◽  
Vol 14 (7) ◽  
pp. 13577-13591 ◽  
Author(s):  
Wennan Zhao ◽  
Wenzhi Guo ◽  
Qianxiang Zhou ◽  
Sheng-Nan Ma ◽  
Ran Wang ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Xiang Ju ◽  
Yangyang Sun ◽  
Feng Zhang ◽  
Xiaohui Wei ◽  
Zhenguo Wang ◽  
...  

With the rapid development of biotechnology, long noncoding RNAs (lncRNAs) have exhibited good application prospects in the treatment of cancer, and they may become new treatment targets for cancer. This study aimed to explore lncRNAs in clear cell renal cell carcinoma (ccRCC). Differentially expressed lncRNAs in 54 pairs of ccRCC tissues and para-carcinoma tissues were analyzed in The Cancer Genome Atlas (TCGA), and the most significant lncRNAs were selected and verified in ccRCC tissues. We found that lncRNA LINC02747 was highly expressed in ccRCC (P < 0.001) and was closely related to high TNM stage (P = 0.006) and histological grade (P = 0.004) and poor prognosis of patients (P < 0.001). In vivo and in vitro experiments confirmed that LINC02747 could promote the proliferation of ccRCC cells. We also found that LINC02747 regulated the proliferation of RCC cells by adsorbing miR-608. Subsequent mechanistic research showed that miR-608 is downregulated in ccRCC (P < 0.001), and overexpression of miR-608 inbibited the proliferation of RCC cells. Moreover, we found that TFE3 is a direct target gene of miR-608. MiR-608 regulated the proliferation of RCC cells by inhibiting TFE3. In conclusion, LINC02747 upregulates the expression of TFE3 by adsorbing miR-608, ultimately promoting the proliferation of ccRCC cells. The above findings indicate that LINC02747 acts as an oncogene in ccRCC and may be developed as a molecular marker for the diagnosis and prognosis of ccRCC. The LINC02747/miR-608/TFE3 pathway may become a new therapeutic target for ccRCC.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Niraj Shenoy

Abstract HIF1α has been termed a tumor-suppressor in clear cell renal cell carcinoma (ccRCC), primarily based on functional proliferation studies in cell lines (in vitro and in vivo) with genetic manipulation, and the adverse prognosis of 14q-deleted ccRCC patients. In other malignancies, however, HIF1α has an established tumor-promoting role. Therefore, this study sought to further examine the role of HIF1α in ccRCC using bioinformatic analyses of 530 ccRCC patients from The Cancer Genome Atlas (TCGA) and The Cancer Proteome Atlas (TCPA) registries. Although lower copy numbers of HIF1A (encoding HIF1α, located at 14q23.2) was associated with worse survival, there was no survival difference based on either HIF1A mRNA or HIF1α protein expression. Interestingly, L2HGDH (L-2-Hydroxyglutarate Dehydrogenase), a recently characterized epigenetic modulating ccRCC tumor-suppressor with a marked impact on survival, was found to be located only ~ 11.5Mbp from HIF1A on 14q (at 14q21.3). L2HGDH was therefore co-deleted in ~ 95% of 14q deletions involving HIF1A locus. Remarkably, HIF1A CNV had a markedly stronger correlation with L2HGDH expression (Rho = 0.55) than its own gene expression (Rho = 0.27), indicating high preserved-allele compensation of HIF1A. Genetic loss of HIF1A was therefore associated with a much greater reduction of L2HGDH gene expression than its own gene expression, providing a possible explanation for survival differences based on HIF1A CNV and mRNA expression. Furthermore, in 14q-deleted ccRCC patients with complete (uncensored) survival data, in the relatively rare cases where genetic loss of HIF1A occurred without genetic loss of L2HGDH (n = 5), the survival was significantly greater than where there was simultaneous genetic loss of both (n = 87) (mean survival 1670.8 ± 183.5 days vs 885.1 ± 78.4 days; p = 0.007). In addition, there was no correlation between HIF1A mRNA and HIF1α protein expression in ccRCC (R = 0.02), reflecting the primarily post-translational regulation of HIF1α. Lastly, even between L2HGDH and HIF1A loci, 14q was found to have several other yet-to-be-characterized potential ccRCC tumor-suppressors. Taken together, the data indicate that HIF1α is not a target of 14q deletion in ccRCC and that it is not a tumor-suppressor in this malignancy.


Author(s):  
J. S. DILEEP KUMAR ◽  
JAYA PRABHAKARAN ◽  
NARESH DAMUKA ◽  
JUSTIN W. HINES ◽  
STEVEN J. KRIDEL ◽  
...  

Objective: The objective of this study was to evaluate the uptake and specificity of [11C]MPC-6827, a MT targeted PET ligand in prostate, glioblastoma and breast cancer cells. Methods: [11C]MPC-6827 was synthesized by reacting corresponding desmethyl precursors with [11C]CH3I in a GE-FX2MeI/FX2M radiochemistry module. In vitro binding of [11C]MPC-6827 was performed in breast cancer MDA-MB-231, glioblastoma (GBM) patient-derived tumor (GBM-PDX), GBM U251 and prostate cancer 3 (PC3) cell lines at 37 °C in quadruplicate at 5, 15, 30, 60, and 90 minute incubation time. The nonspecific bindings were determined by incubation with unlabeled microtubule targeting agents MPC-6827, HD-800, colchicine, paclitaxel and docetaxel (5.0 mM). Results: [11C]MPC-6827 provided the highest binding in the breast cancer cell, MDA-MB-231, among all the cells studied, with 90% specific binding. [11C]MPC-6827 binds to glioblastoma PDX and U251 cells with ~50% and 40% specific binding, whereas, prostate cancer cell line, PC3 cells showed 40% specific binding. [11C]MPC-6827 also exhibits binding to the taxane and colchicine binding sites of MTs, in MDA-MB-231 cells. Conclusion: These data indicate that [11C]MPC-6827 can be a promising PET radiotracer for preclinical imaging of the brain and peripheral cancers.


Sign in / Sign up

Export Citation Format

Share Document