scholarly journals Extraction and Analysis of Compounds with Antibacterial Potential from the Red Alga Grateloupia turuturu

2019 ◽  
Vol 7 (7) ◽  
pp. 220 ◽  
Author(s):  
Isabel Cardoso ◽  
João Cotas ◽  
Ana Rodrigues ◽  
Daniel Ferreira ◽  
Nádia Osório ◽  
...  

Nowadays, the development of new drugs only relies on a small number of molecules and 50% of all existent drugs are extracted or synthetically obtained. This work intends to evaluate the antibacterial potential of the ethanolic and polysaccharide extracts obtained from Grateloupia turuturu and to characterize the composition of the alga’s polysaccharides by FTIR-ATR. We used sequential extraction to obtain the extracts that were tested against S. aureus and E. coli. The ethanolic extracts in E. coli, at the highest concentration used (15 mg mL−1) showed 45.7% (Tetrasporophyte extract) and 55.1% (Carposporophyte extract) of growth reduction and in S. aureus 56.2% (T extract) and 51.8% (C extract). Polysaccharide extracts started showing significant reduction effect on E. coli and S. aureus growth at 7.5 mg mL−1 with a reduction of 54.9% and 39.5%, respectively. At 15 mg mL−1 the reduction observed was 88.5% and 85.4%. The FTIR-ATR allowed to characterize G. turuturu’s polysaccharides concluding that it is composed by a hybrid kappa/iota carrageenan with traces of agar, in both phases of the life cycle. This work allows us to conclude about the antibacterial properties of this alga and the compounds that might be behind this activity, showing that there’s a lot more than a small number of molecules that can be used as natural drugs.

2015 ◽  
Vol 43 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Mihaela NICULAE ◽  
Laura STAN ◽  
Emoke PALL ◽  
Anamaria Ioana PAȘTIU ◽  
Iulia Maria BALACI ◽  
...  

The study was aimed to characterize the chemical composition and the antimicrobial activity of Romanian propolis ethanolic extracts (EEP) against antibiotic-sensitive and antibiotic-resistant E. coli strains isolated from bovine mastitis. The preliminary antimicrobial screening was performed by a disk diffusion method, followed by determination of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) based on broth microdilution assay; further, the synergistic action of propolis with antimicrobial drugs was assessed by a disk diffusion method on agar containing subinhibitory concentrations of propolis. For the chemical characterisation of EEP, the flavonoids (flavones/flavonols, flavanones/dihydroflavonols) and total phenolics were evaluated by spectrophotometric methods. The phenolic compounds of these extracts were also determined using HPLC. The results indicated for Romanian propolis ethanolic extracts the typical poplar composition profile with flavonoids and phenolic acids as main biological active compounds, with chromatographic analysis data confirmed also spectrophotometrically. In addition, positively correlated with the chemical composition, a strong antimicrobial efficacy was exhibited towards E. coli strains, along with interesting synergistic interaction with antibiotics that can be further investigated to obtain propolis-based formulation with antibacterial properties. Subsequent in vitro and in vivo studies evaluating the safety and efficacy are intended to consider propolis in veterinary therapeutic protocols.


Author(s):  
Jayanta Sarma ◽  
Gurvinder Singh ◽  
Mukta Gupta ◽  
Reena Gupta ◽  
Bhupinder Kapoor

Objective: The synthesis of novel benzimidazole-hydrazone derivatives has been carried out based on the previous findings that both these pharmacophores possess potent antimicrobial activities. The antibacterial properties of synthesized derivatives were screened against both Gram-positive and Gram-negative bacteria.Methods: O-phenylenediamine on condensation with substituted aromatic acids in polyphosphoric acid gave benzimidazole nucleus which on reaction with ethyl chloroacetate and hydrazine hydrate in two different steps resulted in the formation of substituted acetohydrazides. The targeted compounds 6a-l were synthesized by reaction of substituted acetohydrazides with aromatic aldehydes and screened for their antibacterial potential by cup-plate method.Results: The synthesized benzimidazole-hydrazones exhibited moderate to strong antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The compounds 6a-6f were found to be most effective against S. aureus, E. coli, and P. aeruginosa. Among all the synthesized compounds, the zone of inhibition of 6f in highest concentration, i.e., 100 μg/ml were found to be >31 mm against all the stains of bacteria.Conclusion: The antibacterial results revealed that the synthetized derivatives have significant antimicrobial properties and further structure activity relationship studies may develop more potent and less toxic molecules.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sergey V. Gudkov ◽  
Dmitriy E. Burmistrov ◽  
Dmitriy A. Serov ◽  
Maxim B. Rebezov ◽  
Anastasia A. Semenova ◽  
...  

The development of antibiotic resistance of bacteria is one of the most pressing problems in world health care. One of the promising ways to overcome microbial resistance to antibiotics is the use of metal nanoparticles and their oxides. In particular, numerous studies have shown the high antibacterial potential of zinc oxide nanoparticles (ZnO-NP) in relation to gram-positive and gram-negative bacteria. This mini-review includes an analysis of the results of studies in recent years aimed at studying the antibacterial activity of nanoparticles based on zinc oxide. The dependence of the antibacterial effect on the size of the applied nanoparticles in relation to E. coli and S. aureus is given. The influence of various ways of synthesis of zinc oxide nanoparticles and the main types of modifications of NP-ZnO to increase the antibacterial efficiency are also considered.


2021 ◽  
Vol 21 (12) ◽  
pp. 6168-6182
Author(s):  
Saee Gharpure ◽  
Rachana Yadwade ◽  
Shuana Mehmood ◽  
Balaprasad Ankamwar

Zinc oxide nanoparticles have been biosynthesized with the help of Neolamarckia cadamba leaf and fruit extracts. ZnO nanoparticles were tested for antibacterial activity before and after calcination against Gram positive (Staphylococcus aureus, Bacillus subtilis) as well as Gram negative micro-organisms (Escherichia coli, Pseudomonas aeruginosa) within the concentration range 0.625–10 mg/mL with the help of well diffusion technique. Higher antibacterial potential has been observed in ZnO nanoparticles synthesized using leaf extract in comparison with those synthesized using fruit extract. Increased antibacterial activity was observed before calcination as compared to after calcination. ZnO synthesized using leaf extract were observed to show significant antibacterial potential against E. coli, S. aureus along with P. aeruginosa before calcination as well as against E. coli after calcination. Similarly, ZnO nanoparticles synthesized using fruit extract exhibited antibacterial activity against E. coli and P. aeruginosa before calcination and against E. coli after calcination. Both the ZnO nanoparticles before and after calcination did not show any antibacterial activity against B. subtilis. Thus, ZnO nanoparticles can serve a dual purpose by its application as an antibacterial agent against susceptible micro-organisms as well as biocompatible carrier system for drug delivery applications in case of non-antibacterial properties by virtue of its inertness as well as easy disposal.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Fabrizio Vitale ◽  
Giuseppa Genovese ◽  
Federica Bruno ◽  
Germano Castelli ◽  
Maria Piazza ◽  
...  

AbstractLeishmaniasis is a disease with a worldwide distribution affecting both humans and animals. There is a need to identify and develop new drugs for the treatment of leishmaniasis. This study showed that crude ethanolic extracts of the red alga


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2001
Author(s):  
Małgorzata Dżugan ◽  
Michał Miłek ◽  
Dorota Grabek-Lejko ◽  
Joanna Hęclik ◽  
Beata Jacek ◽  
...  

Paulownia spp. are widely distributed ornamental trees with leaves abundant in secondary metabolites of high medicinal potential. Eighteen breeding clones of Paulownia spp. were tested in terms of their antioxidant activity and total polyphenolic contents. The 50% ethanolic extracts (2 g/30 mL) of leaves and petioles were compared in the screening step. Eight paulownia clones were selected for detailed analyses including HPTLC polyphenolic profile, verbascoside content and antibacterial activity against five bacteria species (S. aureus, B. cereus, E. coli, Y. enterocolitica, S. enterica). The species-specific differences in terms of antioxidant activity correlated with phenolic compounds were found mainly in the case of leaf blade extracts, the highest for P. tomentosa × P. fortunei and the lowest for P. elongata × P. fortunei clones. The P. tomentosa clones varied greatly in this regard. In the HPTLC polyphenolic profile, the occurrence of some polyphenols was proved and the specific verbascoside content was quantified (70 to 225 mg/g DW). The P. tomentosa × P. fortunei hybrids had the highest inhibitory activity, mainly against Gram-positive bacteria, whereas only slight inhibition of S. aureus growth was observed for P. elongata × P. fortunei clones. The obtained results indicate diverse suitability of paulownia clones as a source of active ingredients.


2020 ◽  
Vol 14 (2) ◽  
pp. 105-110
Author(s):  
Hani Keshavarz Alikhani ◽  
◽  
Jamil Zargan ◽  
Ali Bidmeshkipour ◽  
Ashkan Haji Nour Mohammadi ◽  
...  

Background: The venoms of some scorpions are rich in bioactive components that may be used in the development and discovery of new antibacterial drugs. The venoms have many components, such as neurotoxins, salts, proteins and peptides with therapeutic properties, and can rapidly eliminate a broad range of bacteria. This study evaluated the anti-bacterial activity of Odontobuthus bidentatus’ crude venom against typical Gram-positive and negative bacteria, such as Staphylococcus aureus, Bacillus subtilis, and Escherichia coli. Methods: The antibacterial effects of the crude venom were evaluated using Minimal Inhibitory Concentration (MIC) and MTT assays and its IC50 value was determined, using GraphPad software. Results: The crude venom significantly inhibited the growth of both Gram-positive and negative bacteria. Also the MTT results showed that the crude venom significantly reduced the viability of E. Coli, S. Aureus, and B. Subtilis bacteria compared with that for the controls. The IC50 values of the venom for E.coli, S.aureus, and B.subtilis were 30.19, 17.64, and 24.13 µM, respectively. Conclusion: The findings suggest that the venom of O. bidentatus scorpion has antibacterial properties. Also, our results offer preliminary clues toward the development of new antibacterial agents and new drugs with high therapeutic potentials for use in animals and humans.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
M Niculae ◽  
CD Sandru ◽  
E Pall ◽  
S Popescu ◽  
L Stan ◽  
...  

2020 ◽  
Vol 24 (8) ◽  
pp. 817-854
Author(s):  
Anil Kumar ◽  
Nishtha Saxena ◽  
Arti Mehrotra ◽  
Nivedita Srivastava

Quinolone derivatives have attracted considerable attention due to their medicinal properties. This review covers many synthetic routes of quinolones preparation with their antibacterial properties. Detailed study with structure-activity relationship among quinolone derivatives will be helpful in designing new drugs in this field.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1411
Author(s):  
Mujahid Mehdi ◽  
Huihui Qiu ◽  
Bing Dai ◽  
Raja Fahad Qureshi ◽  
Sadam Hussain ◽  
...  

Fiber based antibacterial materials have gained an enormous attraction for the researchers in these days. In this study, a novel Sericin Encapsulated Silver Nanoclusters (sericin-AgNCs) were synthesized through single pot and green synthesis route. Subsequently these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate (CA) fibers for assessing the antibacterial performance. The physicochemical properties of sericin-AgNCs/CA composite fibers were investigated by transmission electron microscopy (TEM), field emission electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and wide X-ray diffraction (XRD). The antibacterial properties of sericin-AgNCs/CA composite fibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically evaluated. The results showed that sericin-AgNCs incorporated in ultrafine CA fibers have played a vital role for antibacterial activity. An amount of 0.17 mg/mL sericin-AgNCs to CA fibers showed more than 90% results and elevated upto >99.9% with 1.7 mg/mL of sericin-AgNCs against E. coli. The study indicated that sericin-AgNCs/CA composite confirms an enhanced antibacterial efficiency, which could be used as a promising antibacterial product.


Sign in / Sign up

Export Citation Format

Share Document