scholarly journals Immunotherapy for Hepatocellular Carcinoma: New Prospects for the Cancer Therapy

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1355
Author(s):  
Rossella Fasano ◽  
Mahdi Abdoli Shadbad ◽  
Oronzo Brunetti ◽  
Antonella Argentiero ◽  
Angela Calabrese ◽  
...  

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. HCC patients may benefit from liver transplantation, hepatic resection, radiofrequency ablation, transcatheter arterial chemoembolization, and targeted therapies. The increased infiltration of immunosuppressive immune cells and the elevated expression of immunosuppressive factors in the HCC microenvironment are the main culprits of the immunosuppressive nature of the HCC milieu. The immunosuppressive tumor microenvironment can substantially attenuate antitumoral immune responses and facilitate the immune evasion of tumoral cells. Immunotherapy is an innovative treatment method that has been promising in treating HCC. Immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and cell-based (primarily dendritic cells) and non-cell-based vaccines are the most common immunotherapeutic approaches for HCC treatment. However, these therapeutic approaches have not generally induced robust antitumoral responses in clinical settings. To answer to this, growing evidence has characterized immune cell populations and delineated intercellular cross-talk using single-cell RNA sequencing (scRNA-seq) technologies. This review aims to discuss the various types of tumor-infiltrating immune cells and highlight their roles in HCC development. Besides, we discuss the recent advances in immunotherapeutic approaches for treating HCC, e.g., ICIs, dendritic cell (DC)-based vaccines, non-cell-based vaccines, oncolytic viruses (OVs), and ACT. Finally, we discuss the potentiality of scRNA-seq to improve the response rate of HCC patients to immunotherapeutic approaches.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 265 ◽  
Author(s):  
Bernarda Majc ◽  
Metka Novak ◽  
Nataša Kopitar Jerala ◽  
Anahid Jewett ◽  
Barbara Breznik

Glioblastoma is the most common brain malignant tumor in the adult population, and immunotherapy is playing an increasingly central role in the treatment of many cancers. Nevertheless, the search for effective immunotherapeutic approaches for glioblastoma patients continues. The goal of immunotherapy is to promote tumor eradication, boost the patient’s innate and adaptive immune responses, and overcome tumor immune resistance. A range of new, promising immunotherapeutic strategies has been applied for glioblastoma, including vaccines, oncolytic viruses, immune checkpoint inhibitors, and adoptive cell transfer. However, the main challenges of immunotherapy for glioblastoma are the intracranial location and heterogeneity of the tumor as well as the unique, immunosuppressive tumor microenvironment. Owing to the lack of appropriate tumor models, there are discrepancies in the efficiency of various immunotherapeutic strategies between preclinical studies (with in vitro and animal models) on the one hand and clinical studies (on humans) on the other hand. In this review, we summarize the glioblastoma characteristics that drive tolerance to immunotherapy, the currently used immunotherapeutic approaches against glioblastoma, and the most suitable tumor models to mimic conditions in glioblastoma patients. These models are improving and can more precisely predict patients’ responses to immunotherapeutic treatments, either alone or in combination with standard treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Chen ◽  
Qiaodan Zhou ◽  
Junjie Liu ◽  
Wei Zhang

BackgroundThe emergence of immune checkpoint inhibitors (ICIs) marks the beginning of a new era of immunotherapy for hepatocellular carcinoma (HCC), however, not all patients respond successfully to this treatment. A major challenge for HCC immunotherapy is the development of ways to screen for those patients that would benefit from this type of treatment and determine the optimal treatment plan for individual patients. Therefore, it is important to find a biomarker which allows for the stratification of HCC patients, which distinguishes responders from non-responders, thereby further improving the clinical benefits for those undergoing immunotherapy.MethodsWe used univariate and multivariate Cox risk proportional regression models to evaluate the relationship between non-synonymous mutations with a mutation frequency greater than 10%. We made a prognosis of an immunotherapy HCC cohort using mutation and prognosis data. An additional three HCC queues from the cbioportal webtool were used for further verification. The CIBERSORT, IPS, quanTIseq, and MCPcounter algorithms were used to evaluate the immune cells. PCA and z-score algorithm were used to calculate immune-related signature with published gene sets. Gene set enrichment analysis (GSEA) was used to compare the differences in the pathway-based enrichment scores of candidate genes between mutant and wild types.ResultsUnivariate and multivariate Cox results showed that only CTNNB1-Mutant(CTNNB1-MUT) was associated with progression-free survival (PFS) of HCC patients in the immunotherapy cohort. After excluding the potential bias introduced by other clinical features, it was found that CTNNB1-MUT served as an independent predictor of the prognosis of HCC patients after immunotherapy (P < 0.05; HR > 1). The results of the tumor immune microenvironment (TIME) analysis showed that patients with CTNNB1-MUT had significantly reduced activated immune cells [such as T cells, B cells, M1-type macrophages, and dendritic cells (DCs)], significantly increased M2-type macrophages, a significantly decreased expression of immunostimulating molecules, low activity of the immune activation pathways (cytokine pathway, immune cell activation and recruitment) and highly active immune depletion pathways (fatty acid metabolism, cholesterol metabolism, and Wnt pathway).ConclusionsIn this study, we found CTNNB1-MUT to be a potential biomarker for HCC immunotherapy patients, because it identified those patients are less likely to benefit from ICIs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julie Giraud ◽  
Domitille Chalopin ◽  
Jean-Frédéric Blanc ◽  
Maya Saleh

Hepatocellular carcinoma (HCC) is the most common liver tumor and among the deadliest cancers worldwide. Advanced HCC overall survival is meager and has not improved over the last decade despite approval of several tyrosine kinase inhibitors (TKi) for first and second-line treatments. The recent approval of immune checkpoint inhibitors (ICI) has revolutionized HCC palliative care. Unfortunately, the majority of HCC patients fail to respond to these therapies. Here, we elaborate on the immune landscapes of the normal and cirrhotic livers and of the unique HCC tumor microenvironment. We describe the molecular and immunological classifications of HCC, discuss the role of specific immune cell subsets in this cancer, with a focus on myeloid cells and pathways in anti-tumor immunity, tumor promotion and immune evasion. We also describe the challenges and opportunities of immunotherapies in HCC and discuss new avenues based on harnessing the anti-tumor activity of myeloid, NK and γδ T cells, vaccines, chimeric antigen receptors (CAR)-T or -NK cells, oncolytic viruses, and combination therapies.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1020
Author(s):  
Stefan Grote ◽  
Guillermo Ureña-Bailén ◽  
Kenneth Chun-Ho Chan ◽  
Caroline Baden ◽  
Markus Mezger ◽  
...  

Background: Melanoma is the most lethal of all skin-related cancers with incidences continuously rising. Novel therapeutic approaches are urgently needed, especially for the treatment of metastasizing or therapy-resistant melanoma. CAR-modified immune cells have shown excellent results in treating hematological malignancies and might represent a new treatment strategy for refractory melanoma. However, solid tumors pose some obstacles for cellular immunotherapy, including the identification of tumor-specific target antigens, insufficient homing and infiltration of immune cells as well as immune cell dysfunction in the immunosuppressive tumor microenvironment (TME). Methods: In order to investigate whether CAR NK cell-based immunotherapy can overcome the obstacles posed by the TME in melanoma, we generated CAR NK-92 cells targeting CD276 (B7-H3) which is abundantly expressed in solid tumors, including melanoma, and tested their effectivity in vitro in the presence of low pH, hypoxia and other known factors of the TME influencing anti-tumor responses. Moreover, the CRISPR/Cas9-induced disruption of the inhibitory receptor NKG2A was assessed for its potential enhancement of NK-92-mediated anti-tumor activity. Results: CD276-CAR NK-92 cells induced specific cytolysis of melanoma cell lines while being able to overcome a variety of the immunosuppressive effects normally exerted by the TME. NKG2A knock-out did not further improve CAR NK-92 cell-mediated cytotoxicity. Conclusions: The strong cytotoxic effect of a CD276-specific CAR in combination with an “off-the-shelf” NK-92 cell line not being impaired by some of the most prominent negative factors of the TME make CD276-CAR NK-92 cells a promising cellular product for the treatment of melanoma and beyond.


2021 ◽  
Vol 27 ◽  
Author(s):  
Wanbang Zhou ◽  
Yiyang Chen ◽  
Ruixing Luo ◽  
Zifan Li ◽  
Guanwei Jiang ◽  
...  

Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Due to the lack of effective biomarkers and its complex immune microenvironment, the effects of current HCC therapies are not ideal. In this study, we used the GSE57957 microarray data from Gene Expression Omnibus database to construct a co-expression network. The weighted gene co-expression network analysis and CIBERSORT algorithm, which quantifies cellular composition of immune cells, were used to identify modules related to immune cells. Four hub genes (EFTUD2, GAPDH, NOP56, PA2G4) were identified by co-expression network and protein-protein interactions network analysis. We examined these genes in TCGA database, and found that the four hub genes were highly expressed in tumor tissues in multiple HCC groups, and the expression levels were significantly correlated with patient survival time, pathological stage and tumor progression. On the other hand, methylation analysis showed that the up-regulation of EFTUD2, GAPDH, NOP56 might be due to the hypomethylation status of their promoters. Next, we investigated the correlations between the expression levels of four hub genes and tumor immune infiltration using Tumor Immune Estimation Resource (TIMER). Gene set variation analysis suggested that the four hub genes were associated with numerous pathways that affect tumor progression or immune microenvironment. Overall, our results showed that the four hub genes were closely related to tumor prognosis, and may serve as targets for treatment and diagnosis of HCC. In addition, the associations between these genes and immune infiltration enhanced our understanding of tumor immune environment and provided new directions for the development of drugs and the monitoring of tumor immune status.


2019 ◽  
Author(s):  
Wenfa Ng

The immune checkpoint plays an important role in keeping immune cells in check for protecting tissues and organs from attack by the body’s own immune system. Similar concepts also apply in how cancer cells managed to fool immune cells through the surface display of particular antigens that mimic those exhibited by normal body cells. Specifically, cancer cells display antigens that bind to receptors on immune cells that subsequently prevent an attack on the cancer cells. Such binding between cancer antigens and immune cell receptors can be prevented through the use of checkpoint inhibitors antibodies specific for particular receptors on immune cells; thereby, unleashing immune cells to mount an immune response against cancer cells. While demonstrating good remissions in many patients where tumours shrunk substantially after administration of checkpoint inhibitors, cases exist where an overactivated immune system cause harm to organs and tissues culminating in multiple organ failure. Analysis of such toxicity effects of checkpoint inhibitors revealed that generic nature of targeted immune receptor plays a pivotal role in determining extent of side effects. Specifically, if the target immune receptor participates in checkpoints that prevent immune cells from attacking host cells, unleashing such receptors in cancer therapy may have untoward effects on patient’s health. Hence, the goal should be the selection of immune cell receptor specific to cancer cell antigens and which does not bind antigens or ligands displayed by the body’s cells. Such receptors would provide ideal targets for the development of checkpoint inhibitor antibodies for unleashing immune cells against cancer cells. To search for non-generic receptors that bind cancer cell antigens only, a combined computational and experimental approach could be used where ensemble of surface antigens on cancer cells and available receptors on immune cells could be profiled by biochemical assays. Downstream purification of ligands and receptors would provide for both structural elucidation and amino acid sequencing useful for bioinformatic search of homologous sequences. Knowledge of the antigens’ and receptors’ structures and amino acid sequence would subsequently serve as inputs to computational algorithms that models molecular docking events between receptor and antigen. This paves the way for heterologous expression of putative ligand and receptor in cell lines cultured in co-culture format for assessing binding between ligand and receptor, and more importantly, its physiological effects. Ability of immune receptor to bind to ligands on normal cells could also be assessed. Similar co-culture studies could be conducted with cancer cells and different immune cell types to check for reproducibility of observed effect in cell lines. Finally, antibodies could be raised for candidate receptors whose inhibition would not result in systemic attack of immune cells on host cells.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 447
Author(s):  
Robin Park ◽  
Fariha Eshrat ◽  
Mohammed Al-Jumayli ◽  
Azhar Saeed ◽  
Anwaar Saeed

Advanced hepatocellular carcinoma has limited treatment options, but there has been extensive growth recently with cabozantinib, regorafenib, lenvatinib, nivolumab, atezolizumab, and bevacizumab, which are some of the treatments that have received FDA approval just over the last three years. Because HCC tumor microenvironment is potentially immunogenic and typically characterized by inflammation, immunotherapy has been proposed as a potential novel therapeutic approach, which has prompted studies in advanced HCC patients investigating various immune-therapeutic strategies such as CAR-T cell therapy, checkpoint inhibitors, and onco-vaccines. The anti-PD-1 checkpoint inhibitors nivolumab and pembrolizumab have been FDA approved as a second line treatment in patients who progressed or are intolerant to Sorafenib. To build up on the success of PD-1 monotherapy, combinatorial regimens with PD-1/PD-L1 inhibitors plus VEGF targeted agents have shown positive results in various malignancies including HCC. The combination of atezolizumab plus bevacizumab is the new addition to the HCC treatment armamentarium following a pivotal study that demonstrated an improvement in OS over frontline sorafenib. Other novel immune-based approaches and oncolytic viruses are in the early phases of clinical evaluation. These innovative approaches enhance the intensity of cancer-directed immune responses and will potentially impact the outlook of this aggressive disease.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guohe Song ◽  
Yang Shi ◽  
Meiying Zhang ◽  
Shyamal Goswami ◽  
Saifullah Afridi ◽  
...  

AbstractDiverse immune cells in the tumor microenvironment form a complex ecosystem, but our knowledge of their heterogeneity and dynamics within hepatocellular carcinoma (HCC) still remains limited. To assess the plasticity and phenotypes of immune cells within HBV/HCV-related HCC microenvironment at single-cell level, we performed single-cell RNA sequencing on 41,698 immune cells from seven pairs of HBV/HCV-related HCC tumors and non-tumor liver tissues. We combined bio-informatic analyses, flow cytometry, and multiplex immunohistochemistry to assess the heterogeneity of different immune cell subsets in functional characteristics, transcriptional regulation, phenotypic switching, and interactions. We identified 29 immune cell subsets of myeloid cells, NK cells, and lymphocytes with unique transcriptomic profiles in HCC. A highly complex immunological network was shaped by diverse immune cell subsets that can transit among different states and mutually interact. Notably, we identified a subset of M2 macrophage with high expression of CCL18 and transcription factor CREM that was enriched in advanced HCC patients, and potentially participated in tumor progression. We also detected a new subset of activated CD8+ T cells highly expressing XCL1 that correlated with better patient survival rates. Meanwhile, distinct transcriptomic signatures, cytotoxic phenotypes, and evolution trajectory of effector CD8+ T cells from early-stage to advanced HCC were also identified. Our study provides insight into the immune microenvironment in HBV/HCV-related HCC and highlights novel macrophage and T-cell subsets that could be further exploited in future immunotherapy.


2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 4-4
Author(s):  
Haider Mahdi ◽  
Ying Ni

4 Background: Ovarian and MSS endometrial cancers are characterized by immunosuppressive microenvironment (TME) and low response to immunotherapy with checkpoint inhibitors (CPI). Targeting immunosuppressive factors within TMErepresents an attractive approach to enhance response to CPI. Therefore, we sought to investigate different immunogenomic signatures and immune cells within TME and correlate them with survival. Methods: We used whole transcriptome sequencing of matched tumor-normal samples from 38 uterine serous cancer and TCGA data of ovarian (n = 374) and endometrial cancers (n = 541). Immunogenomic signatures focusing on Transforming Growth Factor (TGFβ), 18-genes IFN-γ and myeloid signatures (CD47 and B7H4 expressions) and immune cell abundance were investigated. Gene expression score was calculated by averaging the normalized and log transformed individual gene read counts. The optimized score cut off was selected to best separate the survival in the pilot cohort. Then the score was tested in TCGA RNAseq datasets. Population abundance of tissue-infiltrating immune cells were estimated using MCPcounter R package from bulk transcriptome data. Results: Higher IFN-γ and lower TGF-β signatures predicted better survival for endometrial and ovarian cancers (p < 0.05). The impact of TGF-β was higher in MSI-H vs. MSS cancers (p = 0.013 vs. 0.09). High CD47 predicted poor survival in endometrial cancer. Combined IFN-γ and TGF-β signatures predicted survival in the ovarian and endometrial cohorts (p < 0.001). Combined IFN-γ and CD47 expression predicted survival in endometrial cancer (p = 0.033). Analysis of immune cell abundance revealed enrichment of monocytic lineage and neutrophils but paucity of cytotoxic T-cells, NK cells, dendritic cells and B-cells. Immune cell abundance is being correlated with survival. Conclusions: Our data support the role of immunogenomic markers in predicting survival. We are evaluating these markers in predicting response to CPI in a pilot cohort. Immunogenomic markers represent the tumor microenvironment, can potentially guide rationale combination immunotherapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yingjun Xie ◽  
Yien Xiang ◽  
Jiyao Sheng ◽  
Dan Zhang ◽  
Xiaoxiao Yao ◽  
...  

Primary liver cancer is a common kind of digestive cancers with high malignancy, causing 745,500 deaths each year. Hepatocellular carcinoma is the major pathological type of primary liver cancer. Traditional treatment methods for patients with hepatocellular carcinoma have shown poor efficacy in killing residual cancer cells for a long time. In recent years, tumor immunotherapy has emerged as a promising method owing to its safety and efficacy with respect to delaying the progression of advanced tumors and protecting postoperative patients against tumor relapse and metastasis. Immune tolerance and suppression in tumor microenvironments are the theoretical basis of immunotherapy. Adoptive cell therapy functions by stimulating and cultivating autologous lymphocytes ex vivo and then reinfusing them into the patient to kill cancer cells. Cancer vaccination is performed using antigenic substances to activate tumor-specific immune responses. Immune checkpoint inhibitors can reactivate tumor-specific T cells and develop an antitumor effect by suppressing checkpoint-mediated signaling. Oncolytic viruses may selectively replicate in tumor cells and cause lysis without harming normal tissues. Here, we briefly introduce the mechanism of immunosuppression in hepatocellular carcinoma and summarize the rationale of the four major immunotherapeutic approaches with their current advances.


Sign in / Sign up

Export Citation Format

Share Document