scholarly journals Effect of Base Oil Type in Grease Composition on the Lubricating Film Formation in EHD Contacts

Lubricants ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 32 ◽  
Author(s):  
Dennis Fischer ◽  
Georg Jacobs ◽  
Andreas Stratmann ◽  
Gero Burghardt
Lubricants ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 19 ◽  
Author(s):  
Dennis Fischer ◽  
Helko Mues ◽  
Georg Jacobs ◽  
Andreas Stratmann

The service life of rolling bearings is significantly affected by the lubricating film formation in elastohydrodynamic (EHD) contacts. Grease lubricated EHD contacts show a film thickness decay from a characteristic rotational speed, which is referred to as starvation. Thus, the film thickness of grease lubricated contacts differs from that of oil lubricated contacts. However, the base oil properties under fully flooded conditions are commonly assumed to estimate the operating lifetime of grease lubricated bearings, which are usually not fully flooded. Hence, this assumption results in an overestimation of the film thickness for rotational speeds in the range of starvation, which can lead to uncertainties in the bearing design. At high rotational speeds, i.e., high over rolling frequencies, starvation is likely to occur, due to insufficient lubricant supply by replenishment behind the rolling element. Therefore, the focus of this contribution is to investigate the effect of over rolling frequency, and thus replenishment time, on the lubricating film formation in starved, grease lubricated EHD contacts. The film thickness measurements were performed on a ball-on-disc tribometer, which was extended by adding a second ball specimen in front of the measuring ball. By varying the angular distance between the two contacts, the lubricant displacement can be controlled, such that the effect of replenishment time on the film formation can be determined. These investigations should help to establish an advanced understanding of the mechanisms of grease lubrication, and encourage future work with a focus on developing a method to predict the film formation in grease lubricated EHD contacts.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 773
Author(s):  
Elisabet Benedicto ◽  
Eva María Rubio ◽  
Laurent Aubouy ◽  
María Ana Sáenz-Nuño

The machinability of titanium alloys still represents a demanding challenge and the development of new clean technologies to lubricate and cool is greatly needed. As a sustainable alternative to mineral oil, esters have shown excellent performance during machining. Herein, the aim of this work is to investigate the influence of esters’ molecular structure in oil-in-water emulsions and their interaction with the surface to form a lubricating film, thus improving the efficiency of the cutting fluid. The lubricity performance and tool wear protection are studied through film formation analysis and the tapping process on Ti6Al4V. The results show that the lubricity performance is improved by increasing the formation of the organic film on the metal surface, which depends on the ester’s molecular structure and its ability to adsorb on the surface against other surface-active compounds. Among the cutting fluids, noteworthy results are obtained using trimethylolpropane trioleate, which increases the lubricating film formation (containing 62% ester), thus improving the lubricity by up to 12% and reducing the torque increase due to tool wear by 26.8%. This work could be very useful for fields where often use difficult-to-machine materials—such as Ti6Al4V or γ-TiAl – which require large amounts of cutting fluids, since the formulation developed will allow the processes to be more efficient and sustainable.


Author(s):  
Benedikt J. Siewerin ◽  
Andreas Dobler ◽  
Thomas Tobie ◽  
Karsten Stahl

Abstract Gear pairings often run under very high loads. That can result in different kinds of failure modes limiting their lifetime. Many of the known gear failure modes are tribologically influenced. Especially for gear pairs running with lower circumferential speeds or with different surface hardness, (continuous or slow speed) wear is often the lifetime limiting factor. Slow speed wear appears continuously over a longer period of runtime. In many cases, such applications are lubricated with greases. Since the standardized calculation methods (e.g. ISO 6336) do not cover any determination of wear, one common way to predict the wear lifetime is the calculation method according to Plewe. In the associated Plewe diagram the worn off amount of material is correlated to the minimal lubricant film thickness in the tooth contact. The wear intensity decreases for higher film thicknesses. However, this method has certain limits for greases, because the film thickness of a grease, its bleed oil and the base oil is not necessarily the same. Additionally, the consistency and the flow properties have to be considered, because they influence the lubrication supply mechanism (circulating or channeling). Under certain circumstances channeling could be predominant. Although in theory a grease should build a thicker lubricating film than its base oil, experimental investigations have shown higher wear rates in comparison to oil lubrication.


2019 ◽  
Vol 106 (1-2) ◽  
pp. 233-241 ◽  
Author(s):  
Milena Chanes de Souza ◽  
Hagen Maximilian Wiesner ◽  
Yves Kuche ◽  
Julian Polte ◽  
Jefferson de Oliveira Gomes ◽  
...  

Author(s):  
M Kaneta ◽  
T Ogata ◽  
Y Takubo ◽  
M Naka

The effects of the thickener structure and base oil viscosity on the grease film formation in rolling point elastohydrodynamic contacts have been discussed on the basis of direct observation using the optical interferometry technique. Three different types of diurea greases without additives have been used as test greases. As the base oils three kinds of ether-type synthetic oils having similar molecular structures but different viscosities were used. The film behaviour of fresh greases has also been compared with that of the degraded greases. It has been found that the behaviour of grease elastohydrodynamic lubrication films is basically influenced by the thickener structure and base oil viscosity. The adhesion or deposition of the thickener on the contacting surfaces and oil starvation which affect film formation depend on the thickener structure, base oil viscosity and rolling speed. Furthermore, it has been suggested that there is an optimum temperature which gives a maximum film thickness according to the consistency of the grease.


2018 ◽  
Vol 70 (8) ◽  
pp. 1396-1401 ◽  
Author(s):  
Daoyi Wu ◽  
Yufu Xu ◽  
Lulu Yao ◽  
Tao You ◽  
Xianguo Hu

Purpose This paper aims to study the upgradation of the lubricating performance of the renewable base oil , and to study the tribological behavior of graphene oxide (GO) sheets used as lubricating additives in bio-oil for iron/steel contact. Design/methodology/approach A multifunctional end-face tribometer was used to characterize the friction coefficient and wear loss of the tribosystem under different lubricants. Findings The experimental results show that GO sheets with small size benefit lubricating effects and the optimal concentration of GO sheets in bio-oil is 0.4-0.6 per cent, which can form a complete lubricating film on the frictional interfaces and obtain a low friction coefficient and wear loss. Higher concentration of GO sheets can result in a significant aggregation of the sheets, reducing the content of the lubricating components in the bio-oil, which results in the increase in friction and wear; at this stage, the main wear pattern was ascribed to adhesive wear. Practical implications These results show a promising prospect of improving the tribological performance of renewable base oil with the introduction of GO sheets as additives. Originality/value No literature has covered the tribological behaviour of GO sheets in bio-oil. This study contributes to accelerating the application of bio-oil.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
David Nečas ◽  
Tomáš Jaroš ◽  
Kryštof Dočkal ◽  
Petr Šperka ◽  
Martin Vrbka ◽  
...  

The present paper deals with an investigation of film formation in compliant lubricated contact. Despite these contacts can be found in many applications of daily life including both biological and technical fields, so far little is known about the lubrication mechanisms inside the contacts. The main attention is paid to the effect of kinematic conditions on central film thickness. For this purpose, fluorescent microscopy method was employed. Experiments were realized in ball-on-disk configuration, while the ball was made from rubber and the disk was from optical glass. The contact was lubricated by glycerol and polyglycol to examine the effect of fluid viscosity. The measurements were conducted under pure rolling and rolling/sliding conditions. The entrainment speed varied from 10 to 400 mm/s and constant load of 0.2 N was applied. Experimental results were compared with two theoretical predictions derived for isoviscous-elastohydrodynamic lubrication (I-EHL) regime. It was found that the thickness of lubricating film gradually increases with increasing entrainment speed, which corresponds to theoretical assumptions. Against expectations, evident influence of slide-to-roll ratio (SRR) on film formation was observed. In the last part of the paper, some limitations of this study are discussed and several recommendations for further methodology improvement are suggested.


Author(s):  
IS Tertuliano ◽  
TP Figueiredo ◽  
GAA Machado ◽  
T Cousseau ◽  
A Sinatora ◽  
...  

Highly additized low viscous lubricants, new coatings, and surface treatments have been employed by original equipment manufacturers in several tribosystems to reduce emission and fuel consumption. In this sense, this work investigates the tribological response of four different advanced fully formulated gear oils and three different materials (coatings and topography) in terms of friction and wear using a ball-on-disc test rig under pure unidirectional sliding condition and boundary lubrication. The tested lubricants had different base oils: mineral, semi-synthetic, and synthetic with different additive packages. The ball's material was AISI 52100 bearing steel and the bulk material of the tested specimens (discs) were SAE 4320 steel with surface as follows: (i) ground; (ii) subjected to ceramic shot peening (CSP) and, (iii) coated with WC/C. Optical and scanning electron microscopy and 3D profilometry were used to evaluate the wear track and tribofilm formation. It was found that the frictional dependence on the surface topography and lubricant type is not significant, whilst the wear mechanisms were highly dependent on material and surface conditioning. The harder and rougher the contact body, the higher the wear produced in the counter body. At the harsher conditions base oil type control wear more effectively than the additive package.


Sign in / Sign up

Export Citation Format

Share Document