scholarly journals Graphene-Based Inks for Printing of Planar Micro-Supercapacitors: A Review

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 978 ◽  
Author(s):  
Tuan Sang Tran ◽  
Naba Dutta ◽  
Namita Roy Choudhury

Micro-supercapacitors have recently emerged as promising microscale power sources for portable and wearable microelectronics. However, most reported planar micro-supercapacitors suffer from low energy density and the complexity of fabrication, which calls for their further development. In recent years, the fortification of graphene has enabled the dramatic improvement of planar micro-supercapacitors by taking full advantage of in-plane interdigital architecture and the unique features of graphene. The development of viable printing technologies has also provided better means for manufacturing, bringing micro-supercapacitors closer to practical applications. This review summarizes the latest advances in graphene-based planar micro-supercapacitors, with specific emphasis placed on formulation of graphene-based inks and their fabrication routes onto interdigital electrodes. Prospects and challenges in this field are also discussed towards the realization of graphene-based planar micro-supercapacitors in the world of microelectronics.

Author(s):  
Peiyao Zhao ◽  
Lingling Chen ◽  
Longtu Li ◽  
Xiaohui Wang

Dielectric capacitor has received growing interest for advanced electrical and electronic systems. However, the low energy density and poor thermal stability at high temperature severely hinder its practical applications. Herein,...


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jinmei Liu ◽  
Long Gu ◽  
Nuanyang Cui ◽  
Qi Xu ◽  
Yong Qin ◽  
...  

In the past decades, the progress of wearable and portable electronics is quite rapid, but the power supply has been a great challenge for their practical applications. Wearable power sources, especially wearable energy-harvesting devices, provide some possible solutions for this challenge. Among various wearable energy harvesters, the high-performance fabric-based triboelectric nanogenerators (TENGs) are particularly significant. In this review paper, we first introduce the fundamentals of TENGs and their four basic working modes. Then, we will discuss the material synthesis, device design, and fabrication of fabric-based TENGs. Finally, we try to give some problems that need to be solved for the further development of TENGs.


2019 ◽  
Vol 6 (5) ◽  
pp. 970-981 ◽  
Author(s):  
Liang Xiong Lyu ◽  
Fen Li ◽  
Kang Wu ◽  
Pan Deng ◽  
Seung Hee Jeong ◽  
...  

Abstract Soft robotics with new designs, fabrication technologies and control strategies inspired by nature have been totally changing our view on robotics. To fully exploit their potential in practical applications, untethered designs are preferred in implementation. However, hindered by the limited thermal/mechanical performance of soft materials, it has been always challenging for researchers to implement untethered solutions, which generally involve rigid forms of high energy-density power sources or high energy-density processes. A number of insects in nature, such as rove beetles, can gain a burst of kinetic energy from the induced surface-energy gradient on water to return to their familiar habitats, which is generally known as Marangoni propulsion. Inspired by such a behavior, we report the agile untethered mobility of a fully soft robot in liquid based on induced energy gradients and also develop corresponding fabrication and maneuvering strategies. The robot can reach a speed of 5.5 body lengths per second, which is 7-fold more than the best reported, 0.69 (body length per second), in the previous work on untethered soft robots in liquid by far. Further controlling the robots, we demonstrate a soft-robot swarm that can approach a target simultaneously to assure a hit with high accuracy. Without employing any high energy-density power sources or processes, our robot exhibits many attractive merits, such as quietness, no mechanical wear, no thermal fatigue, invisibility and ease of robot fabrication, which may potentially impact many fields in the future.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Minjie Shi ◽  
Cheng Yang ◽  
Chao Yan ◽  
Jintian Jiang ◽  
Yongchao Liu ◽  
...  

Abstract Ionic liquid (IL) electrolytes have enormous potential for the development of high energy density supercapacitors (SCs) owing to their wide potential windows, but ILs are plagued by sluggish ionic diffusion due to their high viscosity and large ion size. Exploiting superwettable electrodes possessing high compatibility with IL electrolytes remains challenging. Inspired by the biological characteristics observed in nature, a unique film electrode with a Monstera leaf-like nanostructure is synthesized and used to overcome the aforementioned bottleneck. Similar to the pores in Monstera leaves that allow the permeation of air and water vapor, the film electrode is based on porous g-C3N4 nanosheets (~1 nm thick) as ion-accessible “highway” channels, allowing ultrafast diffusion of IL ions. The film exhibits a high diffusion coefficient (3.68 × 10−10 m2 s−1), low activation energy (0.078 mJ mol−1) and extraordinary wettability in the IL electrolyte, indicating its superior IL ion dynamics. As a proof of concept, flexible ionogel SCs (FISCs) with tailorability and editability are fabricated, which exhibit a high energy density (10.5 mWh cm−3), high-power density, remarkable rate capability, and long-term durability, outperforming previously reported FISCs. Importantly, these FISCs can be effectively charged by harvesting sustainable power sources, particularly the rarely studied wind power, for practical applications.


2021 ◽  
Vol 15 (4) ◽  
pp. 215-226
Author(s):  
Michal Korbut ◽  
Dariusz Szpica

Abstract Engines powered by compressed air as a source of propulsion are known for many years. Nevertheless, this type of drive is not commonly used. The main reason for not using commonly is the problem with the low energy density of the compressed air. They offer a number of advantages, primarily focusing on the possibility of significantly lowering the emissions of the engine. Their emissivity mainly depends on the method of obtaining compressed air. This also has an impact on the economic aspects of the drive. Currently there are only a few, ready to implement, compressed air powered engine solutions available on the market. A major advantage is the ability to convert internal combustion engines to run with compressed air. The study provides a literature review of solutions, focusing on a multifaceted analysis of pneumatic drives. Increasing vehicle approval requirements relating to their emissions performance are encouraging for the search of alternative power sources. This creates an opportunity for the development of unpopular propulsion systems, including pneumatic engines. Analysing the works of some researchers, it is possible to notice a significant increase in the efficiency of the drive, which may contribute to its popularisation.


Author(s):  
Hao Xiong ◽  
Jin Hu ◽  
Xiumin Diao

Quadrotors have been used in many areas such as cargo transportation, agriculture, and search and rescue. The low energy density of power sources and the low energy efficiency of quadrotors have prevented quadrotors from a wider range of applications where a large payload has to be carried or long flight time is required. This paper optimizes the energy efficiency of a quadrotor via rotating its arms to proper positions calculated based on the dynamics model of the quadrotor and the power–thrust curve of rotors. The conditions that a quadrotor in steady-state can achieve the optimal energy efficiency are mathematically derived and the energy efficiency of a quadrotor in various scenarios is analyzed. Based on the analysis, an arm-rotation approach is proposed to optimize the energy efficiency of a quadrotor with a center-of-gravity offset in steady hovering. It is shown with simulation that an example quadrotor with rotatable arms can save up to 13% of energy. Experiments show that the same example quadrotor can save even more energy in practice, owing to the byproduct of the arm-rotation approach.


2019 ◽  
Vol 2019 (3) ◽  
pp. 47-53
Author(s):  
Галина Глембоцкая ◽  
Galina Glembockaya ◽  
Станислав Еремин ◽  
Stanislav Eremin

In order to identify promising strategic development possibilities for the pharmaceutical industry in the Russian Federation, a pilot study was conducted, which has analyzed the main trends in the development of innovative medicines. As a result of the content analysis of available sources of scientific literature, the characteristics of options used in the world practice for increasing the innovative activity of individual subjects and the pharmaceutical market as a whole are presented. Possible reserves for the further development of the innovative component of the pharmaceutical market within the framework of the concept of personalized medicine according to the P4 principle (predictive - personalized - preventive - participatory) are identified and structured. The results of use by individual pharmaceutical companies of scientifically and practically justified approaches to optimizing the costs of development and promoting drugs are presented. The advantages and real prospects of a generally accepted method to reduce the cost of development by «expanding the pharmacological effect» (label expansion) of already existing drugs with a known safety profile in the world practice are shown. A scientific generalization and structuring of the goals and results of the post-registration phase of clinical trials to expand the pharmacological action of a number of drugs already existed at the market have been carried out.


Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 50-51
Author(s):  
Akinori Akaike

The Japanese Pharmacological Society (JPS) was established in 1927 with the express purpose of contributing to the further development of the field of pharmacology through the spread of scientific knowledge on pharmacological theory based on applied research conducted in close coordination with our fellow members as well as other affiliated academic societies throughout the world.


Author(s):  
Peter Rez

Transportation efficiency can be measured in terms of the energy needed to move a person or a tonne of freight over a given distance. For passengers, journey time is important, so an equally useful measure is the product of the energy used and the time taken for the journey. Transportation requires storage of energy. Rechargeable systems such as batteries have very low energy densities as compared to fossil fuels. The highest energy densities come from nuclear fuels, although, because of shielding requirements, these are not practical for most forms of transportation. Liquid hydrocarbons represent a nice compromise between high energy density and ease of use.


Author(s):  
Arnoud Arntz ◽  
Marleen Rijkeboer ◽  
Edward Chan ◽  
Eva Fassbinder ◽  
Alp Karaosmanoglu ◽  
...  

Abstract Background A central construct in Schema Therapy (ST) is that of a schema mode, describing the current emotional-cognitive-behavioral state. Initially, 10 modes were described. Over time, with the world-wide increasing and broader application of ST to various disorders, additional schema modes were identified, mainly based on clinical impressions. Thus, the need for a new, theoretically based, cross-cultural taxonomy of modes emerged. Methods An international workgroup started from scratch to identify an extensive taxonomy of modes, based on (a) extending the theory underlying ST with new insights on needs, and (b) recent research on ST theory supporting that modes represent combinations of activated schemas and coping. Results We propose to add two emotional needs to the original five core needs that theoretically underpin the development of early maladaptive schemas (EMSs), i.e., the need for Self-Coherence, and the need for Fairness, leading to three new EMSs, i.e. Lack of a Coherent Identity, Lack of a Meaningful World, and Unfairness. When rethinking the purpose behind the different ways of coping with EMS-activation, we came up with new labels for two of those: Resignation instead of Surrender, and Inversion instead of Overcompensation. By systematically combining EMSs and ways of coping we derived a set of schema modes that can be empirically tested. Conclusions With this project, we hope to contribute to the further development of ST and its application across the world.


Sign in / Sign up

Export Citation Format

Share Document