scholarly journals The Effect of Hydrogen on Martensite Transformations and the State of Hydrogen Atoms in Binary TiNi-Based Alloy with Different Grain Sizes

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3956 ◽  
Author(s):  
Baturin ◽  
Lotkov ◽  
Grishkov ◽  
Rodionov ◽  
Kabdylkakov ◽  
...  

The analysis presented here shows that in B2-phase of Ti49.1Ni50.9 (at%) alloy, hydrogenation with further aging at room temperature decreases the temperatures of martensite transformations and then causes their suppression, due to hydrogen diffusion from the surface layer of specimens deep into its bulk. When hydrogen is charged, it first suppresses the transformations B2↔B19′ and R↔B19′ in the surface layer, and when its distribution over the volume becomes uniform, such transformations are suppressed throughout the material. The kinetics of hydrogen redistribution is determined by the hydrogen diffusion coefficient DH, which depends on the grain size. In nanocrystalline Ti49.1Ni50.9 (at%) specimens, DH is three times greater than its value in coarse-grained ones, which is likely due to the larger free volume and larger contribution of hydrogen diffusion along grain boundaries in the nanocrystalline material. According to thermal desorption spectroscopy, two states of hydrogen atoms with low and high activation energies of desorption exist in freshly hydrogenated Ti49.1Ni50.9 (at%) alloy irrespective of the grain size. On aging at room temperature, the low-energy states disappear entirely. Estimates by the Kissinger method are presented for the binding energy of hydrogen in the two states, and the nature of these states in binary hydrogenated TiNi-based alloys is discussed.

1990 ◽  
Vol 196 ◽  
Author(s):  
R. W. Siegel

ABSTRACTThe ultrafine grain sizes and high diffusivities in nanophase materials assembled from atomic clusters suggest that these materials may have a strong tendency toward superplastic mechanical behavior. Both small grain size and enhanced diffusivity can be expected to lead to increased diffusional creep rates as well as to a significantly greater propensity for grain boundary sliding. Recent mechanical properties measurements at room temperature on nanophase Cu, Pd, and TiO2, however, give no indications of superplasticity. Nonetheless, significant ductility has been clearly demonstrated in these studies of both nanophase ceramics and metals. The synthesis of cluster-assembled nanophase materials is described and the salient features of what is known of their structure and mechanical properties is reviewed. Finally, the answer to the question posed in the title is addressed.


2010 ◽  
Vol 638-642 ◽  
pp. 1439-1444
Author(s):  
Masuo Hagiwara ◽  
Tomoyuki Kitaura

The grain sizes of two kinds of orthorhombic alloys, namely (O+B2) Ti-22Al-11Nb-2Mo -1Fe and (O+2) Ti-27.5Al-13Nb have been successfully reduced by the addition of trace boron (B) (less than 0.12 wt.%). For example, the grain size in the B2 solution-treated condition was reduced from 1 mm to 80 m by the addition of 0.05% B for both alloys. The tensile elongation of Ti-22Al-11Nb-2Mo-1Fe at room temperature and 650C was increased from 0.3% to 4.3%, and from 8.2% to 30.3%, respectively, by the addition of 0.10% B. Ti-27.5Al-13Nb also showed an improved room temperature ductility by the minor B addition.


2011 ◽  
Vol 485 ◽  
pp. 183-186 ◽  
Author(s):  
Tsutomu Furuta ◽  
Saki Hatta ◽  
Yoichi Kigoshi ◽  
Takuya Hoshina ◽  
Hiroaki Takeda ◽  
...  

Freestanding BaTiO3 ceramics films were fabricated using the aerosol deposition (AD) method and the size effect of nanograined BaTiO3 ceramics was demonstrated. Dense BaTiO3 thick film fabricated by the AD method was crystallized and detached from substrate by an annealing treatment at 600 °C, and then the grain size was controlled by a reannealing treatment at various temperatures. As a result, freestanding BaTiO3 thick films with various grain sizes from 24 to 170 nm were successfully obtained. Polarization–electric field (P–E) measurement revealed that BaTiO3 ceramics with grain sizes of more than 58 nm showed ferroelectricity, whereas BaTiO3 ceramics with an average grain size of 24 nm showed paraelectricity at room temperature. Dielectric measurement indicated that the permittivity decreased with decreasing grain size in the range of 170 to 24 nm.


1990 ◽  
Vol 206 ◽  
Author(s):  
G. W. Nieman ◽  
J. R. Weertman ◽  
R. W. Siegel

ABSTRACTMeasurements of tensile strength and creep resistance have been made on bulk samples of nanocrystalline Cu, Pd and Ag consolidated from powders by cold compaction. Samples of Cu-Cu2O have also been tested. Yield strength for samples with mean grain sizes of 5–80 nm and bulk densities on the order of 95% of theoretical density are increased 2–5 times over that measured in pure, annealed samples of the same composition with micrometer grain sizes. Ductility in the nanocrystalline Cu has exceeded 6% true strain, however, nanocrystalline Pd samples were much less ductile. Constant load creep tests performed at room temperature at stresses of >100 MPa indicate logarithmic creep. The mechanical properties results are interpreted to be due to grain size-related strengthening and processing flaw-related weakening.


2001 ◽  
Vol 664 ◽  
Author(s):  
Hyeonsik M. Cheong ◽  
Se-Hee Lee ◽  
Brent Nelson ◽  
Angelo Mascarenhas ◽  
Sayten K. Deb

ABSTRACTWe demonstrate that one can detect minuscule amounts of hydrogen diffusion out of a-Si:H under illumination at room temperature, by monitoring the changes in the Raman spectrum of amorphous tungsten oxide as a function of illumination. The Staebler-Wronski effect, the light-induce creation of metastable defects in hydrogenated amorphous silicon (a-Si:H), has been one of the major problems that has limited the performance of such devices as solar cells. Recently, Branz suggested the hydrogen collision model that can explain many aspects of the Staebler-Wronski effect. One of the main predictions of this model is that the photogenerated mobile hydrogen atoms can move a long distance at room temperature. However, light-induced hydrogen motion in a-Si:H has not been experimentally observed at room temperature. We utilized the high sensitivity of the Raman spectrum of electrochromic a-WO3 to hydrogen insertion to probe the long-range motion of hydrogen at room temperature. We deposited a thin (200 nm) layer of a-WO3 on top of a-Si:H, and under illumination, a change in the Raman spectrum was detected. By comparing the Raman signal changes with those for control experiments where hydrogen is electrochemically inserted into a-WO3, we can estimate semiquantitatively the amount of hydrogen that diffuses out of the a-Si:H layer.


Author(s):  
Jiangjiang Hu ◽  
Weiming Sun ◽  
Taihua Zhang ◽  
Yusheng Zhang

At room temperature, the indentation morphologies of crystalline copper with different grain size including nanocrystalline (NC), ultrafine-grained (UFG) and coarse-grained (CG) copper were studied by nanoindentation at the strain rate of 0.04/s without holding time at indentation depth of 2000 nm. As the grain size increasing, the height of the pile-up around the residual indentation increases and then has a slightly decrease in the CG Cu, While the area of the pile-up increases constantly. Our analysis has revealed that the dislocation motion and GB activities in the NC Cu, some cross- and multiple-slips dislocation insides the larger grain in the UFG Cu, and forest dislocations from the intragranular Frank-Read sources in the CG Cu, would directly induce these distinct pile-up effect.


1995 ◽  
Vol 402 ◽  
Author(s):  
J. A. Kittl ◽  
D. A. Prinslow ◽  
P. P Apte ◽  
M. F. Pas

AbstractThe kinetics of the TiSi2 C49 to C54 phase transformation in thin films on patterned deepsub- micron lines, were studied to obtain the full time, temperature and linewidth dependence of the fraction transformed during rapid thermal annealing. A Johnson-Mehl-Avrami kinetic analysis was performed, obtaining Avrami exponents of 0.8±0.2 for all sub-micron lines and 1. 9±0.2 for a 40 μm side square structure, indicating heterogeneous nucleation followed by one dimensional growth for the narrow lines, and two dimensional growth for the square structure. The activation energy, of 3.9 eV, was independent of linewidth in the sub-micron range. Transformation times increased dramatically for decreasing linewidth, as the linewidth approached the grain size of the starting C49 phase. A kinetic model based on the density of nucleation sites as a function of linewidth and C49 grain size is proposed and shown to fit the data, for samples with two different C49 grain sizes.


1981 ◽  
Vol 32 (6) ◽  
pp. 935 ◽  
Author(s):  
DR Hudson ◽  
RA Hunter ◽  
DW Peter

Grain size of elemental selenium is a major factor controlling the long-term effectiveness of intraruminal selenium pellets. Microscope studies of polished sections of new and used selenium pellets showed that two commercially manufactured pellets contained selenium with average grain sizes about 4 and 40 �m respectively. Plasma selenium concentrations in sheep treated with pellets containing the coarse-grained selenium were maintained at higher levels over longer periods of time than those measured for sheep treated with pellets with fine-grained selenium. Pellets removed from sheep after 2, 4, 8, 16 and 28 days showed a progressive increase in the degree of alteration of selenium to a compound of average composition (g/100 g) iron, 33.7; selenium, 51.3 ; oxygen, 15.0. After 28 days only a small percentage of elemental selenium remained in pellets with fine-grained selenium, whereas about 50% remained in pellets with coarse-grained selenium. CSIRO prototype pellets, for which long-term effectiveness had been established, also contained coarse-grained selenium, and remnants of selenium were found in pellets that had been in sheep for periods up to 3 years. Selenium, administered in gelatin capsules or as sachets containing glass-selenium mixtures, was stable under the pH-Eh conditions of the rumen, but was rendered unstable in selenium pellets or iron-selenium mixtures by the presence of iron. It is probable that the most rapid release of selenium to the sheep occurs as a result of a chemical reaction involving the oxidation of iron and concomitant alteration of elemental selenium to iron selenide.


2009 ◽  
Vol 289-292 ◽  
pp. 557-563 ◽  
Author(s):  
Z.B. Wang ◽  
K. Wang ◽  
K. Lu ◽  
Gerhard Wilde ◽  
Sergiy V. Divinski

A nanostructured surface layer with a gradient microstructure was produced on a Cu plate by means of the surface mechanical attrition treatment (SMAT). Diffusion of Ni in the nanostructured layer was investigated by the radiotracer technique at temperatures from 383 to 438 K. The measured diffusion profiles consist of two distinct sections with different slopes, the steep one corresponding to the top surface layer with the grain size of 10 to 25 nm and the shallow one corresponding to a subsurface layer with a grain size of 25 to 100 nm. The effective diffusivities derived from both sections are more than 2 orders of magnitudes higher than the grain boundary diffusivities in coarse-grained Cu. The significantly accelerated diffusion rates are expected to be associated with the “non-equilibrium” states of interfaces in the nanostructured surface layer induced by SMAT. The difference between the diffusivities in the top and sub- surface layer might result from the fact that most interfaces developed from twin boundaries in the former while produced by dislocation activities in the latter.


MRS Advances ◽  
2016 ◽  
Vol 1 (12) ◽  
pp. 811-816 ◽  
Author(s):  
Myeong-heom Park ◽  
Akinobu Shibata ◽  
Nobuhiro Tsuji

ABSTRACTIt is well-known that dual phase (DP) steels composed of ferrite and martensite have good ductility and plasticity as well as high strength. Due to their excellent mechanical properties, DP steels are widely used in the industrial field. The mechanical properties of DP steels strongly depend on several factors such as fraction, distribution and grain size of each phase. In this study, the grain size effect on mechanical properties of DP steels was investigated. In order to obtain DP structures with different grain sizes, intercritical heat treatment in ferrite + austenite two-phase region was carried out for ferrite-pearlite structures having coarse and fine ferrite grain sizes. These ferrite-pearlite structures with coarse and fine grains were fabricated by two types of heat treatments; austenitizing heat treatment and repetitive heat treatment. Ferrite grain sizes of the specimens heat-treated by austenitizing and repetitive heat treatment were 47.5 µm (coarse grain) and 4.5 µm (fine grain), respectively. The ferrite grain sizes in the final DP structures fabricated from the coarse-grained and fine-grained ferrite-pearlite structures were 58.3 µm and 4.1µm, respectively. The mechanical behavior of the DP structures with different grain sizes was evaluated by an uniaxial tensile test at room temperature. The local strain distribution in the specimens during tensile test was obtained by a digital image correlation (DIC) technique. Results of the tensile test showed that the fine-grained DP structure had higher strength and larger elongation than the coarse-grained DP structure. It was found by the DIC analysis that the fine-grained DP structure showed homogeneous deformation compared with the coarse-grained DP structure.


Sign in / Sign up

Export Citation Format

Share Document