scholarly journals Design of Sodium Alginate/Gelatin-Based Emulsion Film Fused with Polylactide Microparticles Charged with Plant Extract

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 745 ◽  
Author(s):  
Weronika Prus-Walendziak ◽  
Justyna Kozlowska

This study aimed at designing emulsion films based on sodium alginate, gelatin, and glycerol, and their modification by the addition of lipids (cottonseed oil and beeswax). Film composition with the most promising properties was further modified by the incorporation of polylactide (PLA) microparticles with Calendula officinalis flower extract. PLA microspheres were obtained by the emulsion/solvent evaporation method. The size distribution of oily particles in emulsions was investigated. Mechanical properties, moisture content, UV-Vis spectra, and the color of films were analyzed, while biophysical skin parameters were assessed after their application to the skin. Moreover, the contact angles were measured, and the surface free energy of polymeric films was determined. An investigation of the amount of Calendula officinalis flower extract which can be incorporated into PLA microparticles was performed. The modification of the composition of films significantly influenced their physicochemical properties. The selected active ingredient in the form of plant extract was successfully incorporated into polymeric microparticles that were further added into the developed emulsion film. The condition of the skin after the application of obtained emulsion films improved. The prepared materials, especially containing microparticles with plant extract, can be considered for designing new cosmetic forms, such as cosmetic masks, as well as new topical formulations for pharmaceutical delivery.

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 530
Author(s):  
Justyna Kozlowska ◽  
Bartosz Tylkowski ◽  
Natalia Stachowiak ◽  
Weronika Prus-Walendziak

Human skin has protective functions and it is a barrier that protects the interior of the body from harmful environmental factors and pathogen penetration. An important role of the skin is also to prevent the loss of water from the body and if the skin barrier is damaged, the amount of water emitted from the internal environment is increased. Therefore, it is crucial to recovery and maintenance of epidermal barrier integrity. The aim of the current work was to encapsulate Calendula officinalis flower extract in gelatin microspheres and then incorporation microspheres into thin polymeric films made from sodium alginate or mixture of sodium alginate and starch. Such materials may find applications in the cosmetic field for example in the preparation of masks for skin, according to the Calendula officinalis flower extract wide influence on skin condition. Thus, the release profile of this extract from the materials was tested under conditions corresponding to the skin (pH 5.4, 37 °C). The mechanical properties, surface free energy, and moisture content of obtained films were measured. To determine the barrier quality of the stratum corneum, transepidermal water loss (TEWL) and skin color measurements were performed. The loaded microspheres were successfully incorporated into polymeric films without affecting its useful properties. Although the values of Young’s modulus and the moisture content were decreased after film modification by microspheres addition, the skin parameters were much better after application of films with microspheres. The results confirmed that obtained materials can be potentially used in cosmetics to improve the skin barrier quality.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 950
Author(s):  
Weronika Prus-Walendziak ◽  
Justyna Kozlowska

Researchers are constantly searching for innovations that can be applied to the cosmetic industry. Production of porous materials stored in a lyophilized form and swollen directly before use may be beneficial considering their facilitated packaging, transport and storage. In this study, we propose porous materials based on sodium alginate, gelatin, glycerol and lipids (cottonseed oil and beeswax) obtained by freeze-drying and cross-linking. Material composition with the most promising properties was modified by the addition of PLA microparticles with Calendula officinalis flower extract. The structure and properties of obtained porous materials were analyzed. ATR-FTIR, mechanical properties, residual moisture content, porosity and density were assessed, as well as swelling properties and degradation after their cross-linking. The loading capacity and in vitro release of Calendula officinalis flower extract were performed for samples with incorporated PLA microparticles containing plant extract. The modification of the composition and fabrication method of materials significantly influenced their physicochemical properties. The selected plant extract was successfully incorporated into polymeric microparticles that were subsequently added into developed materials. Prepared materials may be considered during designing new cosmetic formulations.


Author(s):  
Islam Mohamed ◽  
Ahmed Moahmed ◽  
Mennatallah Abdelkader ◽  
Alaaeldin Saleh ◽  
Ala-Eddin Al-Moustafa

Introduction: Elaeagnus angustifolia (EA) is a medicinal plant that has been used for centuries in treating many human diseases, in the Middle East, including fever, amoebic dysentery, gastrointestinal problems. However, the effect of EA plant extract on human cancer progression especially oral malignancy has not been investigated yet. Thus, first we examined the effect of EA flower extract on angiogenesis in ovo, and on selected parameters in human oral cancer cells. Materials and methods: Chorioallantoic membranes (CAMs) of chicken embryos at 3-7 days of incubation were used to assess the effect EAflower plant extract on angiogenesis. Meanwhile, cell proliferation, soft agar, cell cycle, cell invasion and cell wounding assays were performed to explore the outcome of EA plant extract on FaDu and SCC25 oral cancer cell lines. On the other hand, western blot analysis was carried out to evaluate E-cadherin and Erk1/Erk2 expression and activation, respectively, in FaDu and SCC25 under the effect of EA extract. Results: Our data show that EA extract inhibits cell proliferation and colony formation, in addition to the initiation of Scell cycle arrest and reductionof G1/G2 phases. In parallel, EA extract provokes differentiation to an epithelial phenotype “mesenchymal-epithelial transition: MET” which is the opposite of “epithelial-mesenchymal transition, EMT”: an important event in cell invasion and metastasis. Thus, EA extract causes a dramatic decrease in cell motility and invasion abilities of FaDu and SCC25 cancer cells in comparison with their controls. These changes are accompanied by an up-regulation of E-cadherin expression. The molecular pathway analysis of the EA flower extract reveals that it can inhibit the phosphorylation of Erk1/Erk2, which could be behind the inhibition of angiogenesis, the initiation of MET event and the overexpression of E-cadherin. Conclusions: Our findings indicate that EA plant extract can downgrade human oral cancer progression by the inhibition of angiogenesis and cell invasion via Erk1/Erk2 signaling pathways.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Tao Xu ◽  
Qiangqiang Xiao ◽  
Jiayu Chen ◽  
Li Li ◽  
Xiongjun Yang ◽  
...  

This study proposes to utilize modified Nano-SiO2/fluorinated polyacrylate emulsion that was synthesized with a semi-continuous starved seed emulsion polymerization to improve the hydrophobicity, thermal stability, and UV-Vis absorption of polyacrylate emulsion film. To verify the proposed method, a series inspection had been conducted to investigate the features of the emulsion film. The morphological analysis indicated that Nano-SiO2 was surrounded by a silane molecule after modification, which can efficiently prevent silica nanoparticles from aggregating. Fourier transform infrared spectra confirmed that modified SiO2 and dodecafluoroheptyl methacrylate (DFMA) were successfully introduced to the copolymer latex. The particle size of latex increased with the introduction of modified Nano-SiO2 and DFMA. UV-Vis absorption spectra revealed that modified silicon nanoparticles can improve the ultraviolet shielding effect obviously. X-ray photoelectron spectroscopy illustrated that the film–air interface was richer in fluorine than film section and the glass side. The contact angle of modified Nano-SiO2/fluorinated polyacrylate emulsion containing 3 wt % DFMA was 112°, slightly lower than double that of polyacrylate emulsion, indicating composite emulsion films possess better hydrophobicity. These results suggest that introducing modified Nano-SiO2 and fluorine into polyacrylate emulsion can significantly enhance the thermal stability of emulsion films.


2021 ◽  
Vol 12 (4) ◽  
pp. 34-36
Author(s):  
Nikita D. Gidde ◽  
Priyanka V. Desai ◽  
Priyanka V. Bagade ◽  
Seema U. Shinde ◽  
Manojkumar M. Nitalikar

The main objective of developing a herbal hand sanitizer would be to promote "hand hygiene." It is a key element in the detection, control, and elimination of any acquired infection. Hand sanitizer will break the chain of microorganisms and other bacteria spreading from the hands to other areas of our bodies. Hand hygiene is essential and among the most common important steps in food processing, food service, and in the preparation of homes and other day care facilities. Hand sanitizer prevents itching, scratching, dermatitis, and other unpleasant side effects. So, maintaining hand hygiene as the key approach, an attempt to formulate an herbal hand sanitizer using extracts from widely available plants such as Argemone mexicana and Calendula officinalis, instead of a synthetic formulation. Physical parameters of the formulation were assessed. These ingredients, in combination, have seemed to act as an effective hand sanitizer.


2019 ◽  
Vol 68 (3-4) ◽  
pp. 92-102
Author(s):  
Filip Benko ◽  
Valentína Palkovičová ◽  
Michal Ďuračka ◽  
Július Árvay ◽  
Norbert Lukáč ◽  
...  

Summary The aim of our study was evaluation of potential antioxidant effects of marigold (Calendula officinalis) extract and assessment of its in vitro impact on the selected quality parameters of bovine spermatozoa. Marigold is medicinal herb from the family Asteraceae native to southern Europe, and it commonly used in pharmacology and medicine. Its well-known positive properties include antioxidant, antibacterial, antiflammatory, antiviral, antifungal, antihelmintic and wound-healing activities. In this study, the flower extracts were subjected to high performance liquid chromatography (HPLC), which identified especially phenolic acids (rosmarinic and chlorogenic acids) and polyphenols (rutin, kaempferol, resveratrol, quercetin and apigenin). These substances are known for their antioxidant activity and protective effects against oxidative stress. For our experiments, 10 samples of semen from sexually mature Holstein bulls were collected on a single day by using an artificial vagina, diluted in physiological saline solution and exposed to solutions with different concentration of marigold flower extract (75, 150 and 300 µg/mL). Selected quality parameters (motility, mitochondrial activity, production of reactive oxygen species – ROS, protein oxidation and lipid peroxidation – LPO) were analyzed after 0, 2 and 24 hours of in vitro culture. The motility evaluation was performed by using the computer-assisted sperm analysis (CASA) method. This method revealed that 75 and 150 µg/mL extract had positive effects and increased the motility (P<0.01) and mitochondrial activity (P<0.0001) of bovine spermatozoa compared to the control group following 2 and 24 hours. This phenomenon was observed also in case of ROS production, protein oxidation and LPO. Marigold extract concentrations of 75 and 150 µg/mL decreased the levels of ROS, protein oxidation and damage to the membranes caused by LPO compared to the control group (P<0.05; P<0.01) at time 2 and 24 hours. At the same time, 300 µg/mL extract exhibited positive, although less significant, effects compared to 75 and 150 µg/mL extracts. The data acquired from our study confirm that 75 and 150 µg/mL of marigold flower extract have positive effects on the motility and mitochondrial activity of bovine spermatozoa, and decrease ROS generation, LPO and protein oxidation in spermatozoa. Based on our results, the flower extract from marigold could be used for protection against oxidative stress in in vitro cultures of male gametes.


2013 ◽  
Vol 749 ◽  
pp. 388-393
Author(s):  
Zhao Qing Li ◽  
Zhen Li ◽  
Hong Zhao ◽  
Wei Zheng ◽  
Li Li

Sodium alginate (SA)/polyvinyl alcohol (PVA) matrix-based wound dressing system containing ciprofloxacin hydrochloride, a topical anti-infective drug, were obtained by a casting/solvent evaporation method. The FTIR spectrum indicated that a strong interaction between SA and PVA and a good compatibility between ciprofloxacin hydrochloride and SA/PVA. The surface contact angles showed that the SA/PVA membrane has good compatibility. The water absorption and water retention rate increased when the concentration of PVA increased. The swelling ratio of SA/PVA mixtures indicated that the membrane go to balance in about 30min. Moreover, the release rate of ciprofloxacin hydrochloride was found to be increased with the increment of PVA content for all the composite samples. Thus, SA/PVA wound dressing systems containing ciprofloxacin hydrochloride could be a novel approach in wound care.


Sign in / Sign up

Export Citation Format

Share Document