scholarly journals Optimization Study on Surface Roughness and Tribological Behavior of Recycled Cast Iron Reinforced Bronze MMCs Produced by Hot Pressing

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3364
Author(s):  
Aydın Güneş ◽  
Ömer Sinan Şahin ◽  
Hayrettin Düzcükoğlu ◽  
Emin Salur ◽  
Abdullah Aslan ◽  
...  

Surface roughness reflects the quality of many operational parameters, namely service life, wear characteristics, working performance and tribological behavior of the produced part. Therefore, tribological performance is critical for the components used as tandem parts, especially for the MMCs (Metal Matrix Composites) which are a unique class of materials having extensive application areas such as aerospace, aeronautics, marine engineering and the defense industry. Current work covers the optimization study of production parameters for surface roughness and tribological indicators of newly produced cast iron reinforced bronze MMCs. In this context, two levels of temperature (400 and 450 °C), three levels of pressure (480, 640 and 820 MPa) and seven levels of reinforcement ratios (60/40, 70/30, 80/20, 90/10, 100/0 of GGG40/CuSn10, pure bronze-as received and pure cast iron-as received) are considered. According to the findings obtained by Taguchi’s signal-to-noise ratios, the reinforcement ratio has a dominant effect on surface roughness parameters (Ra and Rz), the coefficient of friction and the weight loss in different levels. In addition, 100/0 reinforced GGG40/CuSn10 gives minimum surface roughness, pure cast iron provides the best weight loss and pure bronze offers the desired coefficient of friction. The results showed the importance of material ingredients on mechanical properties by comparing a wide range of samples from starting the production phase, which provides a perspective for manufacturers to meet the market supply as per human requirements.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
A. Varela ◽  
A. García ◽  
J. L. Mier ◽  
F. Barbadillo ◽  
C. Camba

This paper compares the abrasive wear behaviour of two nickel alloys (Hastelloy and Refractalloy). Wear was calculated by weight loss using pin-on-disk tests that were carried out at certain values of load, speed, and temperature range. The study is completed with metallographic observations at different temperatures of the wear tracks before and after the tests. Also, the variation of the coefficient of friction with temperature is calculated in the two alloys studied.


2019 ◽  
Vol 803 ◽  
pp. 167-171
Author(s):  
Aphinan Phukaoluan ◽  
Anak Khantachawana ◽  
Pongpan Kaewtatip ◽  
Surachai Dechkunakorn

The tribological behavior of Ti49.4Ni50.6, Ti49Ni46Cu5 and Ti50Ni47Co3 (at%) alloy in dry and wet conditions was studied. The alloy was prepared in a Vacuum Arc Re-melting (VAR), homogenized at 800°C for 3600 s and quenched in water. The phase transformation temperatures were measured by differential scanning calorimetry. Before a tribology test, it is necessary to determine surface roughness, because high surface roughness affects friction. The hardness behavior, based on the load over residual indent area, was determined by a Vickers hardness tester. The sliding friction tests were performed using a ball-on-disk tribometer in dry condition at room temperature and wet condition in artificial saliva (pH 5.35) at 37°C (Oral temperature). The results showed that transformation temperature (Af) lowered oral temperature (37°C), this was mainly attributed to the superelastic properties that can be taken into orthodontic applications. The studies showed significant influences in dry condition of coefficient of friction. Caused by the force between the ball and the disk, contact pressure of surface area effect in wear occurred. The debris could not be removed from the surface area tested. TiNiCu and TiNiCo generated significantly lower average coefficient of friction when tested under dry condition, which may have been due to the addition of Cu and Co. Wet condition decreased coefficient of friction more than dry condition, owing to the lubricating effects of artificial saliva.


MRS Advances ◽  
2020 ◽  
Vol 5 (54-55) ◽  
pp. 2753-2762
Author(s):  
Mathew Brownell ◽  
Arun K. Nair

AbstractPolytetrafluoroethylene (PTFE) film is observed to increase surface roughness during annealing. Longer annealing times leads to greater surface roughness. The coefficient of friction of PTFE film is affected by the shape of microscale sized particles on the film surface. In this study, we investigate the coefficient of friction of PTFE films using a coarse-grained molecular dynamics model based on experimental observations. We observe how the variation in PTFE chain length and film density affect the topography of PTFE films. We also investigate how these properties of PTFE, and the indenter radius affect the coefficient of friction observed during surface scratch. We find that short PTFE chain lengths create a dense film with greater particle spacing, but longer chains form a mesh structure which reduces the density and creates overlapping portions of particles in the film. We develop a convolutional neural network to classify PTFE film surface and predict the coefficient of friction of a modeled film based solely on the equilibrated film topography. The accuracy of the network was seen to increase when the density and images of internal fiber orientation were added as input features. These results indicate that the coefficient of friction of PTFE films in part is governed by the internal structure of the film.


Author(s):  
Dirk Drees ◽  
Satish Achanta

Friction at different force, length, and time scales is of great interest in tribology. The mechanical, chemical, and physical (atomic) interactions, each operating at their own time length and force scale, makes friction complex. This work is an attempt to improve the understanding of friction at normal forces ranging from nN up to N. This investigation was carried out under reciprocating ball-on-flat sliding conditions on engineering surfaces like diamond-like carbon (DLC) and dual phase steel. The test equipments used for this investigation are an atomic force microscope, a microtribometer, and a macrofretting tester. It was observed that for a hard/hard tribocouple like DLC/Si3N4, the variation in the coefficient of friction is negligible whereas the variation is large when the tribocouple is hard / soft like in dual phase steel / Si3N4. By changing the surface roughness of the material, the dependence of friction on normal force could be altered or manipulated.


2019 ◽  
Vol 41 ◽  
pp. 153-160
Author(s):  
Roque Calvo ◽  
Roberto D’Amato ◽  
Emilio Gómez ◽  
Alessandro Ruggiero

2015 ◽  
Vol 88 (1) ◽  
pp. 163-175 ◽  
Author(s):  
R. Mohan ◽  
S. Raja ◽  
G. Saraswathy ◽  
B. N. Das

ABSTRACT Human slip on smooth surfaces is a common accident, even though the footwear soling materials are designed with cleats and treads to provide more friction with the floor. About 20% of footwear is made with thermoplastic rubber (TPR; styrene-butadiene-styrene) soles. The slip resistance property under wet-flooring conditions of this kind of sole is poor because of the nonionic nature of the polymer. Chemical surface modification can be exploited to improve the slip-resistance property of TPR soles. The surface is chemically modified with trichloroisocyanuric acid in a methyl ethyl ketone medium (TCI/MEK; at 1, 2, and 3%) to introduce chlorinated and oxidized moieties to the rubber surface. The extent of surface modification produced in TPR with this change can be tested using attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy, and contact angle and surface roughness measurements. The improvement in slip resistance can be evaluated by measuring the coefficient of friction using a dynamic slip-resistance tester. The extent of the change in the functional physical properties, such as surface roughness, contact angle, work adhesion, in slip resistance can be improved by optimizing the concentration of trichloroisocyanuric acid. Physicomechanical properties of unmodified and modified soles that are essential for wear performance can be tested and compared. Quantitative changes on the surface of modified rubber soles increases surface roughness, reduces contact angles, and increases work energy, so there is a considerable increase in the coefficient of friction, especially under wet floor conditions. The chemical surface treatment tends to reduce the bulk mechanical properties, such as tensile strength, elongation at break, and abrasion resistance, because cyanuric acid attacks the sole. The coefficient of friction produces a positive trend at 1 and 2% TCI/MEK treatments, but the trend is negative at a 3% concentration. The optimum surface treatment level for surface modification to enhance the slip resistance of TPR is 2% TCI/MEK.


1970 ◽  
Vol 92 (2) ◽  
pp. 264-272 ◽  
Author(s):  
T. Tsukizoe ◽  
T. Hisakado

A study was made of surface roughness effects on dry friction between two metals, assuming that the asperities are cones of the slopes which depend on the surface roughness. The theoretical explanations were offered for coefficients of friction of the hard cones and spheres ploughing along the soft metal surface. A comparison of calculated values based on these with experimental data shows good agreement. Moreover, theoretical discussion was carried out of surface roughness effects on dry friction between two metal surfaces on the basis of the analyses of the frictional mechanism for a hard slider on the metal surface. The theoretical estimation of the coefficient of friction between two metal surfaces can be carried out by using the relations between the surface roughness and the slopes of the asperities, and the coefficient of friction due to the adhesion at the interface. The experiments also showed that when two metal surfaces are first loaded normally and then subjected to gradually increasing tangential forces, real area of contact between them increases and the maximum tangential microslip of them increases with the increase of the surface roughness.


Author(s):  
Dinesh G. Bansal ◽  
Jeffrey L. Streator

An experiment is conducted to investigate the role of surface roughness on the coefficient of friction and contact resistance of sliding electrical contacts. A hemispherical pin is sliding along both smooth and rough 2-meter rail surface. Tests are performed at both low and moderate sliding speed and for a range of electrical current densities, ranging from 0 to about 12 GA/m2. It was found that surface roughness had a significant influence on the coefficient of friction, with the smoother surfaces exhibiting higher coefficients of friction. Contact resistance, on the other hand, did not show as strong an effect of surface roughness, except for a few parameter combinations. At the higher current densities studied (>10 GA/m2), it was found that the contact resistance values tended to be on the order of 1 mΩ, independent of load, speed and roughness. This convergence may be due to presence of liquid metal film at the interface, which established ideal electrical contact.


1989 ◽  
Vol 111 (2) ◽  
pp. 386-390 ◽  
Author(s):  
Yufeng Li ◽  
Ali Seireg

This paper deals with the development of a dimensionless empirical formula for calculating the coefficient of friction in sliding-rolling steel on steel contacts under different operating conditions in the thermal regime. The effect of lubrication, surface roughness, and surface coating on friction are considered. The formula shows excellent correlation with the experimental tests conducted by many investigators and provides a unified relationship for all the published data.


Sign in / Sign up

Export Citation Format

Share Document