scholarly journals Thiolated Silicone Oils as New Components of Protective Creams in the Prevention of Skin Diseases

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4723
Author(s):  
Agnieszka Kulawik-Pióro ◽  
Anna K. Drabczyk ◽  
Joanna Kruk ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka ◽  
...  

This work investigates the possibility of using thiolated silicone oils as new components in protective creams and their impact on the efficacy of these products. Thiolated silicone oils were synthesized by amide bond formation between primary amino groups of poly17dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane] and carboxylic groups of thiol ligand (3-mercaptopropionic acid) with carbodiimide as a coupling agent. To evaluate and compare the properties of these kinds of thiomers, three different emulsion o/w types were obtained. Emulsion E1 contained methyl silicone oil, E2 poly[dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane], and E3 thiolated silicone oil (silicone-MPA), respectively. Physicochemical properties, including pH, conductivity, droplet size distribution, viscosity, and stability, were assessed. The efficacy of barrier creams in the prevention of occupational skin diseases depends on their mechanical and rheological properties. Thus, the method which imitates the spreadability conditions on the skin and how structure reconstruction takes places was performed. We also investigated textural profile, bioadhesion, protection against water and detergents, and water vapor permeability. Emulsion E3 was characterized by beneficial occlusion, spreadability, and adhesion properties. These features with prolonged residence time on the skin can make designed barrier creams more preferable for consumers.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2355
Author(s):  
Yuguo Jiang ◽  
Zhanping Zhang ◽  
Yuhong Qi

The compatibility of three types of silicone oil with polydimethylsiloxane, the phase separation of their mixture and the microstructure and properties of their composite coatings were investigated. The existing form of silicone oil in the coating and the precipitation behavior were also studied. The compatibility observed experimentally of the three silicone oils with PDMS is consistent with the results of the thermodynamic calculation. The silicone oil droplet produced by phase separation in the mixture solution can keep its shape in the cured coating, also affecting the microstructure and mechanical properties of the coating. It was found that methyl silicone oil and methyl fluoro silicone oil do not precipitate on the surface, and they have no effect on the surface properties of the coating. In contrast, phenyl silicone oil has obvious effect on the surface, which makes the water contact angle and diiodomethane contact angle of the coating decrease significantly.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Li Zhan-xiong

AbstractThe current work has focused on the preparation and property of a novel fluorosilicone oil with polyfluoroalkyloxypropyl group substitution. Using fluoroalcohols as materials, three kinds of fluorosilicone oil, named [3-(2,2,2- trifluoroethyl-oxy)propyl]methylsilicone oil, [3-(2,2,3,3-tetrafluoropropyl-oxy)propyl] methylsilicone oil and [3-(2,2,3,3,4,4,5,5-octafluoropentyl-oxy)propyl]methyl silicone oil, were prepared via condensation, hydrosilylation, cyclization and ringopening polymerization. All the fluoroalkyl derivatives were characterized by NMR, FT-IR, MS and elemental analysis technique. The thermal stability of these fluoroalkyoxypropylmethylsilicone oils was identified to be excellent by thermogravimetric analysis. [3-(2,2,3,3,4,4,5,5-octafluoropentyl-oxy)propyl]methyl silicone oils with different viscosity were prepared by varying the amount of endblock reagent in the polymerization, and the antifoam property of these fluorosilicone oils was investigated. The result showed that the antifoam property of octafluorosilicone oil with higher viscosity was better than that with lower viscosity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinshu Liu ◽  
Xiaoyan Ma ◽  
Wenzhao Shi ◽  
Jianwei Xing ◽  
Chaoqun Ma ◽  
...  

Abstract Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 602
Author(s):  
Carmen Rodica Pop ◽  
Teodora Emilia Coldea ◽  
Liana Claudia Salanţă ◽  
Alina Lăcrămioara Nistor ◽  
Andrei Borşa ◽  
...  

Kefiran is an exopolysaccharide classified as a heteropolysaccharide comprising glucose and galactose in equimolar quantities, and it is classified as a water-soluble glucogalactan. This work aimed to investigate the effect of different extraction conditions of kefiran on the structural and physical properties of the edible films obtained. Fourier-transform infrared spectroscopy and scanning electron microscopy were performed, together with a determinations of moisture content, solubility, water vapor permeability and degree of swelling. The kefiran films presented values of the water vapor permeability between 0.93 and 4.38 × 10−11 g/m.s.Pa. These results can be attributed to the development of a more compact structure, where glycerol had no power to increase the free volume and the water vapor diffusion through their structure. The possible conformational changes in the kefiran film structure, due to the interspersing of the plasticizers and water molecules that they absorb, could be the reason for producing flexible kefiran films in the case of using glycerol as a plasticizer at 7.5% w/w. Moreover, it was observed that the extraction conditions are a significant factor in the properties of these films and their food technology applications.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Vlad Mihalca ◽  
Andreea Diana Kerezsi ◽  
Achim Weber ◽  
Carmen Gruber-Traub ◽  
Jürgen Schmucker ◽  
...  

Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2569
Author(s):  
Mia Kurek ◽  
Nasreddine Benbettaieb ◽  
Mario Ščetar ◽  
Eliot Chaudy ◽  
Maja Repajić ◽  
...  

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 143
Author(s):  
Herbert Leopold Haller ◽  
Matthias Rapp ◽  
Daniel Popp ◽  
Sebastian Philipp Nischwitz ◽  
Lars Peter Kamolz

Successful research and development cooperation between a textile research institute, the German Federal Ministry of Education and Research via the Center for Biomaterials and Organ Substitutes, the University of Tübingen, and the Burn Center of Marienhospital, Stuttgart, Germany, led to the development of a fully synthetic resorbable temporary epidermal skin substitute for the treatment of burns, burn-like syndromes, donor areas, and chronic wounds. This article describes the demands of the product and the steps that were taken to meet these requirements. The material choice was based on the degradation and full resorption of polylactides to lactic acid and its salts. The structure and morphology of the physical, biological, and degradation properties were selected to increase the angiogenetic abilities, fibroblasts, and extracellular matrix generation. Water vapor permeability and plasticity were adapted for clinical use. The available scientific literature was screened for the use of this product. A clinical application demonstrated pain relief paired with a reduced workload, fast wound healing with a low infection rate, and good cosmetic results. A better understanding of the product’s degradation process explained the reduction in systemic oxidative stress shown in clinical investigations compared to other dressings, positively affecting wound healing time and reducing the total area requiring skin grafts. Today, the product is in clinical use in 37 countries. This article describes its development, the indications for product growth over time, and the scientific foundation of treatments.


e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1782
Author(s):  
Juan Manuel Tirado-Gallegos ◽  
Paul Baruk Zamudio-Flores ◽  
Miguel Espino-Díaz ◽  
René Salgado-Delgado ◽  
Gilber Vela-Gutiérrez ◽  
...  

High molecular weight chitosan (≈322 kDa) was obtained from chitin isolated from Brachystola magna (Girard) to produced biodegradable films. Their physicochemical, mechanical and water vapor permeability (WVP) properties were compared against commercial chitosan films with different molecular weights. Brachystola magna chitosan films (CFBM) exhibited similar physicochemical and mechanical characteristics to those of commercial chitosans. The CFBM films presented lower WVP values (10.01 × 10−11 g/m s Pa) than commercial chitosans films (from 16.06 × 10−11 to 64.30 × 10−11 g/m s Pa). Frankfurt-type sausages were covered with chitosan films and stored in refrigerated conditions (4 °C). Their quality attributes (color, weight loss, pH, moisture, texture and lipid oxidation) were evaluated at 0, 5, 10, 15 and 20 days. Sausages covered with CFMB films presented the lowest weight loss (from 1.24 to 2.38%). A higher increase in hardness (from 22.32 to 30.63 N) was observed in sausages covered with CFMB films. Compared with other films and the control (uncovered sausages), CFMB films delay pH reduction. Moreover, this film presents the lower lipid oxidation level (0.10 malonaldehyde mg/sample kg). Thus, chitosan of B. magna could be a good alternative as packaging material for meat products with high-fat content.


Sign in / Sign up

Export Citation Format

Share Document