scholarly journals Characterization and Hydration Mechanism of Ammonia Soda Residue and Portland Cement Composite Cementitious Material

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4794
Author(s):  
Dong Xu ◽  
Pingfeng Fu ◽  
Wen Ni ◽  
Qunhui Wang ◽  
Keqing Li

The use of ammonia soda residue (ASR) to prepare building materials is an effective way to dispose of ASR on a large scale, but this process suffers from a lack of data and theoretical basis. In this paper, a composite cementitious material was prepared using ASR and cement, and the hydration mechanism of cementitious materials with 5%, 10%, and 20% ASR was studied. The XRD and SEM results showed that the main hydration products of ASR-cement composite cementitious materials were an amorphous C-S-H gel, hexagonal plate-like Ca(OH)2 (CH), and regular hexagonal plate-like Friedel’s salt (FS). The addition of ASR increased the heat of hydration of the cementitious material, which increased upon increasing the ASR content. The addition of ASR also reduced the cumulative pore volume of the hardened paste, which displayed the optimal pore structure when the ASR content was 5%. In addition, ASR shortened the setting time compared with the cement group, and the final setting times of the pastes with 5%, 10%, and 20% ASR were 30 min, 45 min, and 70 min shorter, respectively. When the ASR content did not exceed 10%, the 3-day compressive strength of the mortar was significantly improved, but the 28-day compressive strength was worse. Finally, the hydration mechanism and potential applications of the cementitious material are discussed. The results of this paper promote the use of ASR in building materials to reduce CO2 emissions in the cement industry.

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 204
Author(s):  
Yi Han ◽  
Seokhoon Oh ◽  
Xiao-Yong Wang ◽  
Run-Sheng Lin

At present, reducing carbon emissions is an urgent problem that needs to be solved in the cement industry. This study used three mineral admixtures materials: limestone powder (0–10%), metakaolin (0–15%), and fly ash (0–30%). Binary, ternary, and quaternary pastes were prepared, and the specimens’ workability, compressive strength, ultrasonic pulse speed, surface resistivity, and the heat of hydration were studied; X-ray diffraction and attenuated total reflection Fourier transform infrared tests were conducted. In addition, the influence of supplementary cementitious materials on the compressive strength and durability of the blended paste and the sustainable development of the quaternary-blended paste was analyzed. The experimental results are summarized as follows: (1) metakaolin can reduce the workability of cement paste; (2) the addition of alternative materials can promote cement hydration and help improve long-term compressive strength; (3) surface resistivity tests show that adding alternative materials can increase the value of surface resistivity; (4) the quaternary-blended paste can greatly reduce the accumulated heat of hydration; (5) increasing the amount of supplementary cementitious materials can effectively reduce carbon emissions compared with pure cement paste. In summary, the quaternary-blended paste has great advantages in terms of durability and sustainability and has good development prospects.


2020 ◽  
Vol 19 (3) ◽  
pp. 407-421
Author(s):  
Yimmy Fernando Silva ◽  
◽  
David A. Lange ◽  
Silvio Delvasto ◽  
◽  
...  

This paper presents results of an experimental study of a residue of masonry (RM), sampled from a construction and demolition waste (CDW), added as a supplementary cementitious material (SCM) to partially replace up to 50% of Portland cement in the preparation of mortars. The pozzolanic activity (fixed lime and strength activity index), setting time, heat of hydration, the (autogenous and drying) shrinkage and compressive strength tests were carried out. The results show how the RM has a positive activity because the increase of RM replacement level in the mortars generates a lower heat of hydration and autogenous and drying shrinkage. The fixed lime at 28 and 180 days, indicating that the RM exhibits in some degree pozzolanic activity and the Strength Activity Index (SAI) was 77.13% and 84.36% of the compressive strength of 100% OPC mortar at the 7 and 28 days respectively, which conformed to ASTM C311. These results indicate that RM should be considered appropriated for using as a supplementary cementitious material.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


Author(s):  
Karima Arroudj ◽  
Saida Dorbani ◽  
Mohamed Nadjib Oudjit ◽  
Arezki Tagnit-Hamou

Much of the current research on concrete engineering has been focused on including siliceous additions as supplementary cementitious materials (SCMs). Silica reacts with Calcium hydroxide release during cement hydration, and produces more C-S-H. The latter contributes to increase compactness, mechanical strengths and sustainability of concrete. This paper explores the hydration characteristics of cement paste based on various natural mineral additions, that are very abundant in Algeria and present a high silica content (ground natural pozzolana “PZ” and ground dune sand “DS”). For this purpose, several analyses were carried out on modified cement pastes and mortars. TheseSCMswere introduced by replacement levels of 15, 20 and 25 by weight of cement. We first, studied the effect of these SCMs on the heat of hydration and mechanical strength of mortars at different ages. The evolution of hydration of modified paste was studied, by using Thermal analysis (TG/TDA) at different ages, to analyze the Calcium Hydroxide (CH) content of the modified pastes. It is shown that the CH content of the mixes including SCMs is lower than that of the plain cement paste, indicating that silica reacts with the cement paste through a pozzolanic reaction. Increased pozzolanic activity results in higher amounts of Calcium Silicate Hydrate in the paste, which in turn results in higher compressive strength for modified cement mortars. Due to its crystalline morphology, the ground DS particles present a partial pozzolanic effect, compared to PZ which is semi-crystalline. Modified mortars by 20% DS can be the optimal composition. It presents satisfactory results: good mechanical strength and low heat of hydration. It can lead to an economic and sustainable concrete. Ground DS is very abounded in Africa and free of any impurities and can be a good alternativeSCMsin cement industry.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1789 ◽  
Author(s):  
Yonghui Lin ◽  
Dongqiang Xu ◽  
Xianhui Zhao

Soda residue (SR), the solid waste of Na2CO3 produced by ammonia soda process, pollutes water and soil, increasing environmental pressure. SR has high alkalinity, and its main components are Ca(OH)2, NaCl, CaCl2, CaSO4, and CaCO3, which accords with the requirements of being an alkali activator. The aim of this research is to investigate the best proportion of SR addition and the contribution of individual chemical components in SR to SR- activated ground granulated blast furnace slag (GGBS) cementitious materials. In this paper, GGBS pastes activated by SR, Ca(OH)2, Ca(OH)2 + NaCl, Ca(OH)2 + CaCl2, Ca(OH)2 + CaSO4, and Ca(OH)2 + CaCO3 were studied regarding setting time, compressive strength (1 d, 3 d, 7 d, 14 d, 28 d), hydration products, and microstructure. The results demonstrate that SR (24%)-activated GGBS pastes possess acceptable setting time and compressive strength (29.6 MPa, 28 d), and its hydration products are calcium silicate hydrate (CSH) gel, calcium aluminum silicate hydrates (CASH) gel and Friedel’s salt. CaCl2 in SR plays a main role in hydration products generation and high compressive strength of SR- activated GGBS pastes.


Author(s):  
Olusola Emmanuel Babalola ◽  
Paul O. Awoyera

Supplementary cementitious materials are most needed to enhance a sustainable development in poor communities. It is pertinent to investigate the suitability of such alternative materials for construction. The present study evaluates the strength characteristics of concrete made with varied proportion of Cordia millenii ash blended with Portland cement. Chemical composition of Cordia millenii and the setting time when blended with cement was determined. Other laboratory tests performed on Cordia millenii blended cement include: sieve analysis and specific gravity. Five replacement percentages of Cordia millenii (5%, 10%, 15%, and 20%) were blended with cement in concrete. Control specimens were also produced with only cement. Tests to determine the workability, air entrained, bulk density and compressive strength properties of the concrete were also conducted. Results obtained revealed that optimum Cordia millenii mix is 10%, which yielded the highest density and compressive strength in the concrete.


2011 ◽  
Vol 311-313 ◽  
pp. 1949-1952 ◽  
Author(s):  
Ying Li Gao ◽  
Ling Cheng

Cement based composite cementitious material containing steel slag used in road has been prepared to deal with the current situation that the transportation carbon emission increased year by year. In this material, 40% cement has been replaced by equivalent steel slag, which has the ability of CO2sequestration. This paper studied the CO2sequestration effect and the mechanical properties of the pure cement, the pure steel slag, and the cement based composite cementitious materials containing steel slag. It has been shown that the cement based composite cementitious materials containing steel slag have excellent CO2sequestration property. The mass fraction growth rate of carbon reached 10.86% after 1 hour carbonation experiment, the value between which of pure cement and pure steel slag, and the compressive strength of the composite cementitious materials at 28-day age can reach 45.3MPa, meeting the requirements of road.


2014 ◽  
Vol 629-630 ◽  
pp. 405-416
Author(s):  
Wei Chung Yeih ◽  
Jiang Jhy Chang ◽  
Mao Chieh Chi ◽  
Cheng Chin Chang ◽  
Ran Huang

Concrete consists of many kinds of raw materials, the safety and quality of construction are greatly influenced by the stability of concrete. Thus, how to improve the performance of concrete and construction method, i.e. avoid the bleeding, segregation and honeycomb, etc, becomes a very important issue and imminent mission. This study discusses the different mixing designs of SCC with the amounts of cementitious materials ( OPC, GGBFS, and FA) ranged from 400 - 500 kg/m3. Meanwhile, the fresh and hardened properties of SCC, such as the slump flow, setting time, heat of hydration, and compressive strength were also determined. Test results indicate SCC binding materials can be classified by its compacting ratio. For instance, to pass the boxing test of R1/R2 within and without hindrance, the minimum binding materials should be 500kg/m3, 450kg/m3 and 400kg/m3. The optimum binding materials research shows if use cement, GGBFS and FA at the same time , it can increase the initial and final setting time and decrease the heat of hydration. The SCC binding materials’ concept will meet the requirement of " Safety, Durability, Workability and Ecology " for the new era. Thus, the amount of cement was at least 250kg/m3 or more for SCC mix design and the adding of GGBFS and FA was recommended to maintain 20 - 40 % of all cementitious materials based on the test results.


2013 ◽  
Vol 634-638 ◽  
pp. 311-316
Author(s):  
Ping Yang ◽  
Zhi Gui Qin ◽  
Wei Xia Zhao ◽  
Xi Nan Cai ◽  
Xiao Lin Yuang

The research adopts the raw material of 89% slag with the composite activators and the compressive strength, hydration heat, temperature and expansion property of the material are studied. And the new cementitious material is obtained with the properties of low-heat and small expansion, convenience-confect, easy-operation and need no mass production. This material has the remarkable economic profit and good application foreground especially in the mass grouting engineering.


2018 ◽  
Vol 8 (9) ◽  
pp. 1537 ◽  
Author(s):  
Gaili Xue ◽  
Erol Yilmaz ◽  
Weidong Song ◽  
Shuai Cao

With the use of glauberite mineral (GM) and sodium hydroxide (SH) alkaline catalysts to stimulate slag powder’s internal cementation activity and incorporate the two fine-grained solid wastes, such as quicklime (Q) and desulfurized ash (DA), a new cementitious material suitable for mine tailings was developed to replace traditional ordinary Portland cement (OPC) for reducing cement-related costs. A series of uniaxial compressive strength (UCS) tests were carried out on cemented tailings backfill (CTB) samples containing different activators. The results showed that (1) the highest UCS values of 14-day and 28-day cured CTB samples were 1.259 MPa and 2.429 MPa, respectively, and the effect of different activator types was in the order of SH > GM > DA > Q and SH > GM > Q > DA; (2) the relationship between UCS and activator dosages followed the function y = ax3 − bx2 + cx − d. Compared with the OPC 32.5 R cemented samples, the minimum strength growth factor was 1.45, and the maximum reached 2.03; (3) the optimal proportion of DA slag formula was 4.5% or 5.0% Q, 19% DA, 2.5% GM, and 0.7% SH. The aforesaid new cementitious materials met the mine’s UCS requirements with a relatively low cost (17.04–17.20 €/ton) and solved the stacking problem of solid wastes on the surface well. Ultimately, this study provides a useful reference for the development of mineral binders.


Sign in / Sign up

Export Citation Format

Share Document