scholarly journals Microstructure and Soil Wear Resistance of D517 Coating Deposited by Electric Spark Deposition

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5932
Author(s):  
Min Wei ◽  
Qiang Wan ◽  
Shanjun Li ◽  
Liang Meng ◽  
Daocheng Cao ◽  
...  

The abrasion failure is the key factor for prolonging the service life and energy saving of furrow openers. The hardness enhancement was reported to be an effective strategy to increase the wear resistance against the soil abrasion. D517 coatings were deposited on Q235 steel by electric spark to improve the wear-resistant property with an affordable cost for farmers. The wear behavior of the coatings was characterized in a pin on disk friction equipment and a homemade soil abrasion simulation system. The soil adhesion, which is highly related to energy consumption, was also evaluated. Results showed that D517 coatings revealed dendrite structure with some randomly distributed carbides. The electric current exerted a great influence on the microstructure, hardness, friction coefficient, and soil wear rate. The wear rate of samples deposited with 80 A and 90 A reduced to 79% and 84%, respectively, as compared with the normalized heat-treated 65 Mn steel after 6 h in soil. This work provides a promising solution to increase the wear resistance of furrow openers. It needs to be noted that the coating would increase the soil adhesion of the opener, which needs to be further explored to decrease the energy consumption.

2021 ◽  
Author(s):  
Safiye İpek Ayvaz ◽  
Mehmet Ayvaz

In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950074
Author(s):  
ZHI-YUAN ZHU ◽  
JIA-HUAN CHEN ◽  
YUAN-FEI CAI ◽  
JIAN-QIANG LI

This study explored the friction and wear behavior of a Ni-based exhaust valve at high temperatures. Nickel-based superalloy was used with two types of processing states: the original forged sample and the sample under the standard T1 heat treatment. At room temperature and a loading force of 10[Formula: see text]N, the average friction coefficient of the T1 heat-treated specimen is 0.61, which was lower than that of the forged sample (0.78). The wear rate of this specimen was also lower than that of the forged sample at the same temperature and loading force. Thus, T1 heat treatment can significantly improve the wear resistance of the alloy because of [Formula: see text] phase and carbides. The wear rate was the minimum at 550∘C and increased again at 750∘C dominated by the formation and flake-off of the oxide film.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4426-4431 ◽  
Author(s):  
CHANG-MIN SUH ◽  
GYE-WON CHOI ◽  
KYUNG-RYUL KIM ◽  
MOON-SIK HAN

This study investigated the effect of carbide precipitation hardening of heat-treated SK5M steel on the sliding wear resistance. The cold rolled carbon steel strip samples (J, G, and S-type) were oil quenched after tempering for optimal durations. The wear resistance was evaluated using a pin-on-disk wear test with an alumina counterface against different samples at various loads and distances with a constant running speed. The size and distribution of the precipitated carbides were observed using an image analyzer at various heat treatments. The heat-treated samples presented more dense carbide distribution in an area fraction and the decreased size of carbides. It is confirmed that the wear rate is minimum at an optimized austenitizing temperature of around 800°C. The specific wear rate indicates that the S-type sample has high wear resistance compared to that of J-Type. This is understood by stable wear behavior of S-type sample containing evenly distributed carbide precipitation.


2019 ◽  
Vol 26 (02) ◽  
pp. 1850143
Author(s):  
SAEED NIYAZBAKHSH ◽  
KAMRAN AMINI ◽  
FARHAD GHARAVI

Anodic oxide coatings are applied on aluminum alloys in order to improve corrosion resistance and to increase hardness and wear resistance. In the current study, a hard anodic coating was applied on AA7075-T6 aluminum alloy. To survey the anodizing temperature (electrolyte temperature) effect, three temperatures, namely, [Formula: see text]C, 0∘C and 5∘C were chosen and the samples were sealed in boiling water and sodium dichromate to study the role of sealing. For measuring the oxide coatings porosity and hardness and also for comparing the samples’ wear resistance field-emission scanning electron microscopy (FESEM), microhardness test and pin-on-disk method were utilized, respectively. The results showed that by increasing the anodizing temperature, hardness and consequently wear resistance decreased so that hardness and weight loss in the samples with no sealing decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg at [Formula: see text]C to 405 and 358[Formula: see text]HV and 1.05 and 1.12[Formula: see text]mg at 0∘C and 5∘C, respectively, which is due to the porosity increment by increasing the anodizing temperature. Also, sealing in boiling water and dichromate contributed to soft phases and coating hydration, which resulted in a decrease in hardness and wear resistance. Hardness and weight loss in the coated samples at [Formula: see text]C decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg in the samples with no sealing to 435 and 417[Formula: see text]HV and 0.72 and 0.83[Formula: see text]mg in the samples sealed in boiling water and dichromate, respectively.


2021 ◽  
Vol 1039 ◽  
pp. 201-208
Author(s):  
Ruaa A. Salman ◽  
Naser K. Zedin

This research is devoted to study the effect of addition (2%) TiO2 with different weight percent of fly ash particulate (0, 2, 4, 6%) to 2024 Al alloy on the wear behavior and hardness. The alloy was fabricated by the liquid metallurgy method. The results founds that the wear rate decreased from 0.55 with 0% fly ash to 0.18 at addition percentage of 6% fly ash. Also, the results reveal increasing the samples wear rate with increasing the load and loaded time. The rate of wear was decreased with increasing the sliding speed. Also, the values of hardness increased from 120VH to 160VH with rising the fly ash from 0% to 6%. Keywords: Fly Ash addition, TiO2, 2024 Al Alloy, Wear Resistance, Hardness.


2019 ◽  
Vol 26 (07) ◽  
pp. 1850217 ◽  
Author(s):  
O. ÇOMAKLI ◽  
A. F. YETIM ◽  
B. KARACA ◽  
A. ÇELIK

The 31CrMoV9 steels were plasma nitrided under different gas mixture ratios to investigate an influence of nitrogen amount on wear behavior. The structure, mechanical and tribological behavior of untreated and nitrided 31CrMoV9 steels were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), microhardness device, 3D profilometer and pin-on-disk wear tester. The analysis outcomes displayed that the compound layer consists of nitride phases (Fe2N, Fe3N, Fe4N and CrN). Additionally, the thickness of the compound layers, surface hardness and roughness increased with increasing nitrogen amount in the gas mixture. The highest friction coefficient value was obtained at nitrogen amount of 50%, but the lowest value was seen at nitrogen amount of 6%. It was observed that wear resistance of 31CrMoV9 steel improved after plasma nitriding, and the best wear resistance was also obtained from plasma nitrided sample at the gas mixture of 94% H[Formula: see text]% N2.


2017 ◽  
Vol 740 ◽  
pp. 9-16
Author(s):  
Ahmed Sahib Mahdi ◽  
Mohammad Sukri Mustapa ◽  
Mahmod Abd Hakim Mohamad ◽  
Abdul Latif M. Tobi ◽  
Muhammad Irfan Ab Kadir ◽  
...  

The micro-hardness and compression of recycling aluminum alloy AA6061 were investigated as a function of the different microstructure and constituent powder metallurgy method. Five specimens were selected to investigate the compression strength and microhardness. The first, as fabricated specimen (as compacted), the second was as heat treated by quenching and aging process. Three specimens were mixed with Graphite particles as a reinforcement material. Compression strength values were tested for the specimens as fabricated and heat treated which were 195 and 300 MPa, respectively. The improvement ratio was 52% for the specimen as heat treated. On the other hand, high wear resistance was given by the specimen as heat treated, whereas, the lower wear strength was at the specimen mixed with 4.5% Graphite. These results were attributed to that the wear resistance related to the microhardness value.


Author(s):  
Wei Jiang ◽  
Shouxing Zhu ◽  
Shuqi Wang

Dry sliding tests were performed under various sliding speeds and loads in air for AISI H13 steel with different hardness values. Through investigating morphologies, compositions and phases of worn surfaces, the wear behaviors and mechanisms of AISI H13 steel as a function of sliding speed and hardness were explored, and especially, the effects of friction-oxide layers and their stability were disclosed. Sliding speed and the hardness of the steel significantly affected the wear behavior and mechanism due to the evolution of friction-oxide layers. With an increase of sliding speed, more oxides were produced by the process of friction oxidation. The stability of friction-oxide layers became a key factor in determining wear rate, which was closely related with the hardness of the steel. Those friction-oxide layers formed on the quenched and tempered steel with lower hardness remained stable, providing more protection from wear. Three types of wear mechanisms were found to prevail. Adhesive and abrasive wear were dominant accompanied with oxidation mild wear at relatively low sliding speeds, where the wear resistance was proportional to the hardness of the steel. As sliding speed increased, oxidation mild wear became dominating, where the wear resistance was not related to the hardness of the steel. As the sliding speed further increased, the wear fell in oxidation mild-to-severe wear transition region, in which the wear resistance was inversely proportional to the hardness of the steel.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Haitham T. Hussein ◽  
Abdulhadi Kadhim ◽  
Ahmed A. Al-Amiery ◽  
Abdul Amir H. Kadhum ◽  
Abu Bakar Mohamad

Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray florescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4 : 1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.


1983 ◽  
Vol 27 ◽  
Author(s):  
K. Kumar ◽  
H. Newborn ◽  
R. Kant

ABSTRACTPin-on-disk tests were performed for comparative friction and wear behavior on flat and graded profile boron implanted beryllium samples. Peak, intended boron concentrations of 10, 20, 30 and 40 atom percent were investigated. Auger Electron Spectroscopy was used to determine the boron concentration as a function of depth. Preliminary work was performed to study the effects of (1) a low temperature (450°C, 1–1/2 hours) heat treatment of the implanted specimens and (2) a change in the pin material. All of the boron implanted beryllium samples showed significant improvement versus unimplanted beryllium and an anodized beryllium surface. Graded samples showed comparable friction coefficients but inferior wear resistance with respect to the flat profile samples.


Sign in / Sign up

Export Citation Format

Share Document