scholarly journals Fabrication of Low-Temperature Sintering Building Bricks Using Drilling Cutting and Geopolymeric Technology

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5940
Author(s):  
Wei-Hao Lee ◽  
Yi-Che Hsieh ◽  
Hsin-Wen Wang ◽  
Yung-Chin Ding ◽  
Ta-Wui Cheng

This study explores the practicability of using drill cutting (DC) as raw material to fabricate building bricks through the high-temperature sintering method and low-temperature geopolymeric setting (LTGS) process. Drilling mud can be recycled and reutilized after certain treatment procedures and is considered as a non-hazardous waste. However, the treatment process is time-consuming and not cost-effective. For the sintering method, low porosity and high mechanical strength bricks can be sintered at temperatures above 800 °C and meet CNS standards. For the low-temperature geopolymeric setting process, sodium silicate was selected as an activating agent for geopolymerization of drill cutting. Several process parameters, such as Si2O/Na2O modulus of alkali solution and low-temperature geopolymeric setting temperature, were investigated. The physical and mechanical properties of the fabricated brick were evaluated. According to the test results, 72.4 MPa compressive strength building bricks with low porosity (13.9%) and water absorption (6.0%) can be fabricated with 2.0 Si2O/Na2O alkali solution at 500 °C. The drill cutting brick fabricated not only meets the CNS 382.R2002 common brick standard, but also solve its disposal problem.

2013 ◽  
Vol 785-786 ◽  
pp. 1066-1071
Author(s):  
Jian Feng Wu ◽  
Bin Zheng Fang ◽  
Xiao Hong Xu ◽  
Xin Bin Lao

The cordierite was synthesized at relatively low temperature by pressureless sintering method, using calcined bauxite, talcum , quartz and feldspar as raw materials in this paper. The water absorption (Wa), porosity (Pa), bulk density (Db) and bending strength of samples have been tested, and the synthetic process and mechanism have been investigated by XRD, SEM, and so on. The results showed that the cordierite could be synthesized at 1280°C and the range of synthetic temperature is 1160~1300°C, when the sample was sintered at 1280°C for 2h, its bulk density and bending strength were 2.20g/cm3and 72.13MPa, respectively. XRD analysis showed that the main phase of sample was cordierite, the cordierite content was about 88wt%, and the minor phases were MgAl2O4spinel and corundum. SEM results showed that the samples were dense and the pore sizes were 5 μm~100μm, the grains were growth and development well, the grains size were 0.5μm~6μm. High reaction activity corundum and mullite were provided by calcined bauxite, then coupled with the role of feldspar, thus reduced the synthetic temperature of cordierite.


2016 ◽  
Vol 9 (1) ◽  
pp. 80-95
Author(s):  
Agus Sudibyo ◽  
Sardjono Sardjono

Crude palm oil (CPO)is the richest natural plant source of carotenoids in terms of retinol (pro-vitamin A) equivalent, whereas palm oil mill effluent (POME) is generated from palm oil industry that contains oil and carotenes that used to be treated before discharge. Carotenoids are importance in animals and humans for the purpose of the enhancement of immune response, conversion of vitamin A and scavenging of oxygen radicals. This component has different nutritional  functions and benefits to humaan health. The growing interest in the other natural sources of beta-carotene and growing awareness to prevent pollution has stimulated the industrial use of CPO and POME as a raw material for carotenoids extraction. Various technologies of extraction and separation have been developed in order to recover of carotenoids.This article reports on various technologies that have been developed in order to recover of carotenoids from being destroyed in commercial refining of palm oil and effects of some various treatments on the extraction end separation for carotenoid from palm oil and carotenoids concentration. Principally, there are different technologies, and there is one some future which is the use of solvent. Solvent plays important role  in the most technologiest, however the problem of solvents which are used is that they posses potentiaal fire health and environmental hazards. Hence selection of the  most safe, environmentally friendly and cost effective solvent is important to design of alternative extraction methods.Chemical molecular product design is one of the methods that are becoming more popular nowadays for finding solvent with the desired properties prior to experimental testing.ABSTRAKMinyak sawit kasar merupakan sumber karotenoid terkaya yang berasal dari tanaman sawit sebagai senyawa yang sama dengan retinol atau pro-vitamin A; sedangkan limbah pengolahan minyak sawit dihasilkan dari industri pengolahan minyak sawit yang berisi minyak dan karotene yang perlu diberi perlakuan terlebih dahulu sebelum dibuang. Karotenoid merupakan bahan penting yang diperlukan pada hewan dan manusia guna memperkuat tanggapan terhadap kekebalan, konversi ke vitamin A dan penangkapan gugus oksigen radikal. Dengan berkembangnya ketertarikan dalam mencari beta-karotene yang bersumber dari alam lain dan meningkatnya kesadaran untuk mencegah adanya pencemaran lingkungan, maka mendorong suatu industri untuk menggunakan CPO dan POME sebagai bahan baku untuk diekstrak karotenoidnya. Berbagai macam teknologi guna mengekstrak dan memisahkan karotenoid telah dikembangkan untuk mendapatkan kembali karotenoidnya. Makalah ini melaporkan dan membahas berbagai jenis teknologi yang telah dikembangkan guna mendapatkan kembali senyawa karotenoid dari kerusakan di dalam proses pemurnian minyak sawit secara komersial dan pengaruh beberapa perlakuan terhadap ekstrasi dan pemisahan karotenoid dari minyak sawit dan konsentrasi karotenoidnya. Pada prinsipnya, berbagai teknologi yang digunakan untuk mengekstrak dan memisahkan karotenoid terdapat perbedaan, dan terdapat salah satu teknologi yang digunakan untuk esktrasi dan pemisahan karotenoid adalah menggunakan bahan pelarut. Pelarut yang digunakan mempunyai peranan yang penting dalam teknologi ekstrasi; namun pelarut yang digunakan untuk mengekstrak tersebut mempunyai persoalan karena berpotensi mengganggu kesehatan dan membahayakan cemaran lingkungan. Oleh karena itu, pemilihan jenis teknologi yang aman, ramah terhadap lingkungan dan biaya yang efektif untuk penggunaan pelarut merupakan hal penting sebelum dilakukan desain metode/teknologi alternatif untuk esktrasi karotenoid. Pola produk molekuler kimia merupakan salah satu metode yang saat ini menjadi lebih populer untuk mencari pelarut dengan sifat-sifat yang dikehendaki sebelum diujicobakan. Kata kunci :    karotenoid, ekstrasi, pemisahan, teknologi, minyak sawit kasar, limbah industri pengolahan sawit.


2018 ◽  
Vol 27 (4) ◽  
pp. 096369351802700 ◽  
Author(s):  
Mehmet Önal ◽  
Gökdeniz Neşer

Glass reinforced polyester (GRP), as a thermoset polymer composites, dominates boat building industry with its several advantages such as high strength/weight ratio, cohesiveness, good resistance to environment. However, proper recovering and recycling of GRP boats is became a current environmental requirement that should be met by the related industry. In this study, to propose in a cost effective and environmentally friendly way, Life Cycle Assessment (LCA) has been carried out for six scenarios include two moulding methods (namely Hand Lay-up Method, HLM and Vacuum Infusion Method, VIM) and three End-of-Life (EoL) alternatives(namely Extruding, Incineration and Landfill) for a recreational boat's GRP hulls. A case study from raw materials purchasing phase to disposal/recycling stages has been established taking 11 m length GRP boat hull as the functional unit. Analysis show that in the production phase, the impacts are mainly due to the use of energy (electricity), transport and raw material manufacture. Largest differences between the methods considered (HLM and VIM) can be observed in the factors of marine aquatic ecotoxicity and eutrophication while the closest ones are abiotic depletion, ozon layer depletion and photochemical oxidation. The environmental impact of VIM is much higher than HLM due to its higher energy consumption while vacuum infusion method has lower risk than hand lay-up method in terms of occupational health by using less raw material (resin) in a closed mold. In the comparison of the three EoL techniques, the mechanical way of recycling (granule extruding) shows better environmental impacts except terrestrial ecotoxicity, photochemical oxidation and acidification. Among the EoL alternatives, landfill has the highest environmental impacts except ‘global warming potential’ and ‘human toxicity’ which are the highest in extrusion. The main cause of the impacts of landfill is the transportation needs between the EoL boats and the licenced landfill site. Although it has the higher impact on human toxicity, incineration is the second cleaner alternative of EoL techniques considered in this study. In fact that the similar trend has been observed both in production and EoL phases of the boat. It is obvious that using much more renewable energy mix and greener transportation alternative can reduce the overall impact of the all phases considerably.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Muhammad Imran ◽  
Asim Mahmood ◽  
Günter Neumann ◽  
Birte Boelt

Low temperature during germination hinders germination speed and early seedling development. Zn seed priming is a useful and cost-effective tool to improve germination rate and resistance to low temperature stress during germination and early seedling development. Spinach was tested to improve germination and seedling development with Zn seed priming under low temperature stress conditions. Zn priming increased seed Zn concentration up to 48 times. The multispectral imaging technique with VideometerLab was used as a non-destructive method to differentiate unprimed, water- and Zn-primed spinach seeds successfully. Localization of Zn in the seeds was studied using the 1,5-diphenyl thiocarbazone (DTZ) dying technique. Active translocation of primed Zn in the roots of young seedlings was detected with laser confocal microscopy. Zn priming of spinach seeds at 6 mM Zn showed a significant increase in germination rate and total germination under low temperature at 8 °C.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 200-209
Author(s):  
Caiyun Zhang ◽  
Chunhong Li ◽  
Bolin Ji ◽  
Zhaohui Jiang

Abstract A fast, simple, and energy-saving microwave-assisted approach was successfully developed to prepare carbon microspheres. The carbon microspheres with a uniform particle size and good dispersity were prepared using glucose as the raw material and HCl as the dehydrating agent at low temperature (90°C) in an open system with the assistance of microwave heating. The carbon microspheres were characterized by elemental analysis, XRD, SEM, FTIR, TG, and Raman. The results showed that the carbon microspheres prepared under the condition of 18.5% (v/v) HCl and heating for 30 min by microwave had a narrow size distribution. The core–shell structure of the carbon core and TiO2 shell was prepared with (NH4)2TiF6, H3BO3 using the microwave-assisted method. The hollow TiO2 microspheres with good crystallinity and high photocatalytic properties were successfully prepared by sacrificing the carbon microspheres.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1738
Author(s):  
Saeid Vafaei ◽  
Alexander Wolosz ◽  
Catlin Ethridge ◽  
Udo Schnupf ◽  
Nagisa Hattori ◽  
...  

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lokesh Kumar ◽  
Susanta Kumar Jana

Abstract Sulfur dioxide is considered as an extremely harmful and toxic substance among the air pollutants emitted from the lignite- and other high-sulfur-coal based power plants, old tires processing units, smelters, and many other process industries. Various types of absorbents and desulfurization technologies have been developed and adopted by the industries to reduce the emission rate of SO2 gas. The present paper focuses on the ongoing advances in the development of varieties of regenerative and non-regenerative absorbents viz., Ca-based, Mg-based, Fe-based, Na-based, N2-based, and others along with various FGD technology, viz., wet, dry or semi-dry processes. Additionally, different types of contactors viz., packed column, jet column, spray tower, and slurry bubble columns along with their significant operational and design features have also been discussed. In the existing or newly installed limestone-based FGD plants, an increasing trend of the utilization of newly developed technologies such as limestone forced oxidation (LSFO) and magnesium-enhanced lime (MEL) are being used at an increasing rate. However, the development of low-cost sorbents, particularly suitable solid wastes, for the abatement of SO2 emission needs to be explored sincerely. Many such wastes cause air pollution by way of entrainment of fine particulate matter (PM), groundwater contamination by its leaching, or brings damage to crops due to its spreading onto the cultivation land. One such pollutant is marble waste and in this work, this has been suggested as a suitable substitute to limestone and cost-effective sorbent for the desulfurization of flue gases. The product of this process being sellable in the market or may be used as a raw material in several industries, it can also prove to be an important route of recycling and reuse of one of the air and water-polluting solid wastes.


2016 ◽  
Vol 690 ◽  
pp. 282-285
Author(s):  
Soravich Mulinta

The purpose of the study was to investigate the effects of dolomite body, frit and potassium feldspar on the properties of color slip for decorative method of color slip on earthen ware production. The characterization of raw material was analyzed by X-ray fluorescence (XRF). The experiment started with triaxial blend of dolomite body, frit and potassium feldspar in the defined ratio and then to painting of color slips on earthenware production. After that, firing specimens at 950 °C in oxidation atmosphere. Finally, the specimens were tested microstructure and physical properties. The results showed that the ratio of 50% dolomite body, 40% frit and 10% potassium feldspar were optimum properties for decorative on earthenware body. In color slip consisting of blue color added Cobalt oxide 1% ,Green colors added chromic oxide 10% , Gray color added manganese oxide 10% ,yellow color added stain 2225 10% and hazel color added ferric oxide 2 wt %.


2021 ◽  
Author(s):  
Yakov Dzhalatyan ◽  
Mikhail Charupa ◽  
Aydar Galiev ◽  
Yevgeniy Karpekin ◽  
Sergey Egorov ◽  
...  

Abstract In the presented paper, the object of the study are carbonate rocks of the Riphean and clastic-carbonate rocks of Vendian-Cambrian ages, uncovered by the well drilled at Yurubcheno-Tokhomskoye field. These reservoirs are characterized by extremely low porosity (1-4%) and determining saturation nature and fluid contacts cannot be reliably solved by conventional wireline petrophysical logging. Solutions to these problems are provided by interval testing using wireline formation evaluation testing tool (WFT). However, to obtain quality results from WFT testing it is important to identify porous intervals first by using advanced wireline logging services which are sensitive to porosity and fractures. In order to select the optimal WFT toolstring combination and to prospective testing intervals, advanced petrophysical wireline logging suit ran first. Porous reservoirs were identified from density, neutron and nuclear magnetic resonance evaluation. Saturation evaluated through dielectric and induction-based resistivity logging. In fracture-vug type reservoir, the main inflow of formation fluid into the well is provided from fractures, so it was very important to allocate conductive fractures to plan test intervals for WFT accordingly. based on imagers evaluation, fractures and faults were visualized; using Stoneley's wave conductive fractures, not clogged with drilling mud solids were identified; borehole acoustic reflection survey was used to segregate large fractures that propagated in the reservoir; During WFT logging, a total of 23 intervals were tested, for 8 of which reservoir fluid inflow was achieved, in all others, mainly with low porosity or single non-conductive fracture, the inflow was not achieved or was insignificant. According to the results of WFT testing, the nature of saturation for clastic-carbonate sediments of Vendian age was determined. Inflow of formation fluid (oil and water) from Riphean fractured reservoirs was achieved from 6 intervals, with identified fractures according to described above advanced logging suit. In addition, pressure transient analysis was performed, to measure the formation pressure, define pressure gradient curves and assess the fluids contact level with high confidence, for the first time for this field.


Sign in / Sign up

Export Citation Format

Share Document