scholarly journals Catalytic Activity of New Oxovanadium(IV) Microclusters with 2-Phenylpyridine in Olefin Oligomerization

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7670
Author(s):  
Barbara Gawdzik ◽  
Joanna Drzeżdżon ◽  
Tatsiana Siarhei ◽  
Artur Sikorski ◽  
Anna Malankowska ◽  
...  

So far, few microclusters containing vanadium have been described in the literature. In this report, the synthesis protocol for the preparation of oxovanadium (IV) microclusters with 2-phenylpyridine is shown for the first time. Moreover, the crystal structure of these microclusters is also studied through the use of X-rays. The morphology of the prepared crystals is investigated using a field-emission Scanning Electron Microscope (SEM). The new compound, after activation by modified methylaluminoxane as the catalytic system, is investigated regarding the oligomerizations of 3-buten-1-ol, 2-chloro-2-propen-1-ol, allyl alcohol, and 2,3-dibromo-2-propen-1-ol. The products of oligomerization are tested by the TG-FTIR and MALDI-TOF-MS methods. Moreover, the values of catalytic activities for the new oxovanadium(IV) microclusters with 2-phenylpyridine are determined for the 3-buten-1-ol, 2-chloro-2-propen-1-ol, allyl alcohol, and 2,3-dibromo-2-propen-1-ol oligomerizations. Oxovanadium(IV) microclusters with 2-phenylpyridine are shown to be very highly active precatalysts for the oligomerization of allyl alcohol, 2,3-dibromo-2-propen-1-ol, and 3-buten-1-ol. However, in the case of 2-chloro-2-propen-1-ol oligomerization, the new microclusters are seen as highly active precatalysts.

1998 ◽  
Vol 188 ◽  
pp. 446-446
Author(s):  
N. Iyomoto ◽  
K. Makishima ◽  
M. Tashiro ◽  
K. Matsushita ◽  
Y. Fukazawa ◽  
...  

Fornax A (NGC 1316) is a radio galaxy with prototypical double lobes. Feigelson et al. (1995 ApJ 449, L149) and Kaneda et al. (1995 ApJ 454, L13) detected inverse Compton X-rays for the first time from its radio lobes, and unambiguously derived the lobe magnetic field intensity of 2-4 μG. Accordingly, the radio-emitting electrons in the lobes are inferred to have a Lorentz factor of 104, and hence a synchrotron life time of ~108 yr. This means that Fornax A was highly active at least 108 years ago.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jacek Malinowski ◽  
Dagmara Jacewicz ◽  
Barbara Gawdzik ◽  
Joanna Drzeżdżon

Abstract The report focuses on the new precatalysts for ethylene oligomerization. The five chromium(III) complex compounds containing the following ligands: dipicolinate anion, oxalate anion, 5-aminopyridine-2-carboxylate anion, 2,2′-bipyridine and 4,4′-dimethoxy-2,2′-bipyridine have been examined towards catalytic activity for ethylene oligomerization. The chromium(III) complexes have been activated by modified methylaluminoxane. The obtained oligomers have been investigated by MALDI-TOF–MS, thermal analysis and infrared spectroscopy. The results revealed that the examined chromium(III) complexes are highly active catalysts for ethylene oligomerization. The values of catalytic activities of the examined complexes are in the range 1860 – 3798 g∙mmol-1∙h-1∙bar-1.


2009 ◽  
Vol 79-82 ◽  
pp. 1711-1714
Author(s):  
Wen Yan Zhang ◽  
Chun Hua Lu ◽  
Ya Ru Ni ◽  
Yan Zhang ◽  
Zhong Zi Xu ◽  
...  

For the first time, nano-scale rods of NaLaxYb9-x(SiO4)6O2 (x=1,3,5,7,9) crystals (NLS) activated with Er3+ have been synthesized through a mild hydrothermal conditions with subsequent calcination. The as-obtained products were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results indicate that the compound has an apatite structure and crystallizes in the hexagonal system, space group P63/m. The excitation spectrum and emission spectrum were also emplyed to investigate the optical properties of the nano-rods. The Er3+ doped NLS exhibit green/red up-conversion luminescence under excitation with a diode laser at 980 nm.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


Author(s):  
M.G. Baldini ◽  
S. Morinaga ◽  
D. Minasian ◽  
R. Feder ◽  
D. Sayre ◽  
...  

Contact X-ray imaging is presently developing as an important imaging technique in cell biology. Our recent studies on human platelets have demonstrated that the cytoskeleton of these cells contains photondense structures which can preferentially be imaged by soft X-ray imaging. Our present research has dealt with platelet activation, i.e., the complex phenomena which precede platelet appregation and are associated with profound changes in platelet cytoskeleton. Human platelets suspended in plasma were used. Whole cell mounts were fixed and dehydrated, then exposed to a stationary source of soft X-rays as previously described. Developed replicas and respective grids were studied by scanning electron microscopy (SEM).


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3141-3152
Author(s):  
Alma C. Chávez-Mejía ◽  
Génesis Villegas-Suárez ◽  
Paloma I. Zaragoza-Sánchez ◽  
Rafael Magaña-López ◽  
Julio C. Morales-Mejía ◽  
...  

AbstractSeveral photocatalysts, based on titanium dioxide, were synthesized by spark anodization techniques and anodic spark oxidation. Photocatalytic activity was determined by methylene blue oxidation and the catalytic activities of the catalysts were evaluated after 70 hours of reaction. Scanning Electron Microscopy and X Ray Diffraction analysis were used to characterize the catalysts. The photocatalyst prepared with a solution of sulfuric acid and 100 V presented the best performance in terms of oxidation of the dye (62%). The electric potential during the synthesis (10 V, low potential; 100 V, high potential) affected the surface characteristics: under low potential, catalyst presented smooth and homogeneous surfaces with spots (high TiO2 concentration) of amorphous solids; under low potential, catalyst presented porous surfaces with crystalline solids homogeneously distributed.


2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Author(s):  
Mamaeva S.N. ◽  
Vinokurov R.R. ◽  
Munkhalova Ya.A. ◽  
Dyakonova D.P. ◽  
Platonova V.A. ◽  
...  

Currently, due to the intensive development of high-tech science-intensive medical and research devices, more and more attention is paid to the development of diagnostics of rare and difficult to diagnose diseases. It is known that among numerous nephropathies, hematuria may be the only symptom of kidney and urinary tract diseases, which complicates their diagnosis and treatment. In order to develop new approaches for the diagnosis of nephropathies, the authors have been studying the morphology of red blood cells in the blood and urine of children and adults using a scanning electron microscope for several years. The paper presents the results of studies of children with various kidney diseases, including IgA-nephropathy, and chronic glomerulonephritis. Scanning electron microscopy was used for the first time to detect nanoparticles on the surface of red blood cells, the size of which is comparable to the size of viruses, which became the basis for one of the authors ' assumptions, namely, the possible transport of certain types of viruses by red blood cells. Thus, some kidney diseases could be considered virus-associated. This paper presents for the first time the results of determining the glomerular filtration rate of both kidneys separately in the study of separate kidney function and of the study of urine smears obtained during catheterization of the ureters in patients with hydronephrosis of one of the kidneys by scanning electron microscopy. As in previous studies, nanoparticles were found on the surface of red blood cells, which leads to the conclusion about the possible viral nature of the disease of the considered patient. In addition, smear images obtained using a microscope showed a significant difference in the elements of the right and left kidneys urine, which did not contradict the data on the study of glomerular filtration rate. According to the authors, the capabilities of the scanning electron microscope can be applied in fundamental research of kidney diseases at the cellular and molecular levels, forming new ideas about their origin, as well as on the basis of which new methods of non-invasive diagnostics can be built.


Sign in / Sign up

Export Citation Format

Share Document