scholarly journals Copper(II) Carboxylates with 2,3,4-Trimethoxybenzoate and 2,4,6-Trimethoxybenzoate: Dinuclear Cu(II) Cluster and µ-Aqua-Bridged Cu(II) Chain Molecule

2021 ◽  
Vol 7 (3) ◽  
pp. 35
Author(s):  
Masahiro Mikuriya ◽  
Chihiro Yamakawa ◽  
Kensuke Tanabe ◽  
Raigo Nukita ◽  
Yuki Amabe ◽  
...  

Copper(II) complexes with 2,3,4-trimethoxybenzoic acid (H234-tmbz) and 2,4,6-trimethoxybenzoic acid (H246-tmbz), [Cu2(234-tmbz)4(H2O)2] (6) and [Cu(246-tmbz)2(µ-H2O)2(H2O)2]n (7), were synthesized and characterized by elemental analysis, infrared and UV-vis spectra and temperature dependence of magnetic susceptibilities (1.9–300 K). The X-ray crystal structures revealed that the former 6 is a dinuclear cluster having syn-syn-bridged Cu2(µ-234-tmbz)4 core with Cu···Cu separation of 2.6009(7) Å, while the latter 7 is a µ-aqua-bridged chain molecule consisting of Cu(246-tmb)2(µ-H2O)2(H2O)2 units with Cu···Cu separation of 4.1420(5) Å. Temperature dependence of magnetic susceptibilities showed that an antiferromagnetic interaction with 2J = −272 cm−1 for 6 and a weak antiferromagnetic interaction with J = −0.21 cm−1 for 7, between the two copper(II) ions. The adsorption isotherm of 6 showed Types I behavior having a 125.4 m2g−1 of specific surface area.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 217
Author(s):  
Marin Ugrina ◽  
Martin Gaberšek ◽  
Aleksandra Daković ◽  
Ivona Nuić

Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge due to an increase in oxygen-containing functional groups as well as a decrease in specific surface area and crystallinity due to the formation of sulfur-containing clusters at the zeolite surface. The sorption of Hg(II) species onto the sulfur-impregnated zeolite was affected by the pH, solid/liquid ratio, initial Hg(II) concentration, and contact time. The optimal sorption conditions were determined as pH 2, a solid/liquid ratio of 10 g/L, and a contact time of 800 min. The maximum obtained sorption capacity of the sulfur-impregnated zeolite toward Hg(II) was 1.02 mmol/g. The sorption mechanism of Hg(II) onto the sulfur-impregnated zeolite involves electrostatic attraction, ion exchange, and surface complexation, accompanied by co-precipitation of Hg(II) in the form of HgS. It was found that sulfur-impregnation enhanced the sorption of Hg(II) by 3.6 times compared to the natural zeolite. The leaching test indicated the retention of Hg(II) in the zeolite structure over a wide pH range, making this sulfur-impregnated sorbent a promising material for the remediation of a mercury-polluted environment.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1230
Author(s):  
Fabien Léonard ◽  
Zhen Zhang ◽  
Holger Krebs ◽  
Giovanni Bruno

The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1067 ◽  
Author(s):  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Andrey O. Zhigachev ◽  
Vladimir M. Vasyukov ◽  
Yuri I. Golovin

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500–1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.


2011 ◽  
Vol 403-408 ◽  
pp. 1205-1210
Author(s):  
Jaleh Babak ◽  
Ashrafi Ghazaleh ◽  
Gholami Nasim ◽  
Azizian Saeid ◽  
Golbedaghi Reza ◽  
...  

In this work ZnO nanocrystal powders have been synthesized by using Zinc acetate dehydrate as a precursor and sol-gel method. Then the products have been annealed at temperature of 200-1050°C, for 2 hours. The powders were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL) spectroscopy. The morphology of refrence ZnO nanoparticles have been studied using Transmission Electron Microscope (TEM). During the annealing process, increase in nanocrystal size, defects and energy gap quantitative, and decrease in specific surface area have been observed.


2019 ◽  
Vol 9 (23) ◽  
pp. 5132 ◽  
Author(s):  
Jung Eun Park ◽  
Gi Bbum Lee ◽  
Bum Ui Hong ◽  
Sang Youp Hwang

In this study, spent activated carbons (ACs) were collected from a waste water treatment plant (WWTP) in Incheon, South Korea, and regenerated by heat treatment and KOH chemical activation. The specific surface area of spent AC was 680 m2/g, and increased up to 710 m2/g through heat treatment. When the spent AC was activated by the chemical agent potassium hydroxide (KOH), the surface area increased to 1380 m2/g. The chemically activated ACs were also washed with acetic acid (CH3COOH) to compare the effect of ash removal during KOH activation. The low temperature N2 adsorption was utilized to measure the specific surface areas and pore size distributions of regenerated ACs by heat treatment and chemical activation. The functional groups and adsorbed materials on ACs were also analyzed by X-ray photoelectron spectroscopy and X-ray fluorescence. The generated ash was confirmed by proximate analysis and elementary analysis. The regenerated ACs were tested for toluene adsorption, and their capacities were compared with commercial ACs. The toluene adsorption capacity of regenerated ACs was higher than commercial ACs. Therefore, it is a research to create high value-added products using the waste.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2527
Author(s):  
Tingting Niu ◽  
Bin Zhou ◽  
Zehui Zhang ◽  
Xiujie Ji ◽  
Jianming Yang ◽  
...  

Resorcinol-formaldehyde/titanium dioxide composite (RF/TiO2) gel was prepared simultaneously by acid catalysis and then dried to aerogel with supercritical fluid CO2. The carbon/titanium dioxide aerogel was obtained by carbonization and then converted to nanoporous titanium carbide/carbon composite aerogel via 800 °C magnesiothermic catalysis. Meanwhile, the evolution of the samples in different stages was characterized by X-ray diffraction (XRD), an energy-dispersive X-ray (EDX) spectrometer, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and specific surface area analysis (BET). The results showed that the final product was nanoporous TiC/C composite aerogel with a low apparent density of 339.5 mg/cm3 and a high specific surface area of 459.5 m2/g. Comparing to C aerogel, it could also be considered as one type of highly potential material with efficient photothermal conversion. The idea of converting oxide–carbon composite into titanium carbide via the confining template and low-temperature magnesiothermic catalysis may provide new sight to the synthesis of novel nanoscale carbide materials.


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050079
Author(s):  
Xuelei Li ◽  
Jinfeng Bai ◽  
Jiaqi Li ◽  
Chao Li ◽  
Junru Zhang ◽  
...  

In this study, nitrogen-deficient graphitic carbon nitride (M-LS-g-C3N4) with a mesoporous structure and a large specific surface area was obtained by calcination after melt pretreatment using urea as a precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-Vis, ESR and photoluminescence (PL) were used to characterize the structure, morphology and optical performance of the samples. The TEM results showed the formation of a mesoporous structure on the 0.1[Formula: see text]M-LS-g-C3N4 surface. The porous structure led to an increase in the specific surface area from 41.5[Formula: see text]m2/g to 124.3[Formula: see text]m2/g. The UV-Vis results showed that nitrogen vacancies generated during the modification process reduced the band gap of g-C3N4 and improved the visible light absorption. The PL spectra showed that the nitrogen defects promoted the separation of photogenerated electron–hole pairs. In the visible light degradation of methyl orange (MO), the reaction rate constant of 0.1[Formula: see text]M-LS-g-C3N4 reached 0.0086[Formula: see text][Formula: see text], which was 5.05 times that of pure g-C3N4. Superoxide radicals and photogenerated holes were found to be the main active species in the reaction system. This study provides an efficient, green and convenient means of preparing graphitic carbon nitride with a large specific surface area.


NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950080
Author(s):  
Hao Hu ◽  
Xiaogang Sun ◽  
Wei Chen ◽  
Jie Wang ◽  
Xu Li ◽  
...  

Carbon nanotubes (CNTs) were doped by ammonium borate as the sources of nitrogen and boron. Under the protection of Ar gas, boron-nitrogen doped CNTs were prepared through nitriding and boronization at high temperature. It is a conductive additive. Then, the obtained CNTs were mixed with activated carbon (AC), SP, sodium dodecyl sulfate (SDS), and cellulose fiber to prepare electrodes. With all the materials, a symmetric electric double-layer supercapacitor (EDLC) was assembled. Next, the materials and electrodes were also characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The factors, chemical connections, and specific surface area of the CNTs were analyzed by X-ray energy spectrum analysis (EDS), X-ray photoelectron spectroscopy (XPS), as well as a specific surface area and porosimetry analyzer (BET). In addition, the electrochemical performances of electric double-layer capacitors were tested with the help of cyclic voltammetry, constant-current charging and discharging, and so on. From the results, we can make a conclusion, that is, both B and N atoms were added into the CNTs and formed bonds successfully with carbon atoms mutually. Besides, the specific surface area is about 1.5 times than that of the CNT. When the charge/discharge current density reaches 50[Formula: see text]mA/g, we can find that the mass specific capacitance of the capacitor can run up to 32.19[Formula: see text]F/g. Also, we observe that the maximum power density is close to 220[Formula: see text]W/kg (700[Formula: see text]mA/g), and the energy density can arrive 9.31[Formula: see text]Wh/kg (50[Formula: see text]mA/g). Based on the impedance test, the electrodes are characterized with low impedance. After 2000 cycles, the boron-nitrogen doped double-layer capacitors maintain a capacitance retention ratio of above 95%. Its power density can still achieve 220[Formula: see text]W/kg when the energy density keeps at 3.46[Formula: see text]Wh/kg. In other words, the electrochemical performance functions of the electric double-layer capacitors are enhanced while the CNTs serve as the electrodes.


2012 ◽  
Vol 625 ◽  
pp. 243-246
Author(s):  
Shu Hua Geng ◽  
Wei Zhong Ding ◽  
Shu Qiang Guo ◽  
Xiong Gang Lu

Iron ore reduction and carbon deposition in pure CO was investigated by using thermogravimetric (TG) method over the temperature range of 0-1200°C. The results of the work may be summarized as follows: in CO stream, carbon deposition occurred below 900°C, no carbon deposition was found above 1000°C. X-Ray analysis of the reacted sample indicated that the carbon deposition occurred with the iron was reduced. The iron reduction process and carbon deposition occurred simultaneously. The rate of carbon deposition changed with the transformation of iron oxides. The specific surface area and pore structure of reduced samples were analyzed. The specific surface area changed with the amount of carbon deposition.


2011 ◽  
Vol 688 ◽  
pp. 245-249 ◽  
Author(s):  
Zhi Qiang Wei ◽  
Xiao Yun Wang ◽  
Hua Yang

Special carbon encapsulated Fe core-shell nanoparticles with a size range of 15–40 nm were successfully prepared via confined arc plasma method. The composition, morphology, microstructure, specific surface area, particle size of the product by this process were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (XEDS) and BET N2adsorption. The experiment results shown that the carbon encapsulated Fe nanoparticles with clear core-shell structure, the core of the particles is body centered cubic (BCC) structure Fe, and the shell of the particles is disorder carbons. The particle size of the nanocapsules ranges from 15 to 40nm,with an averaged value about 30nm, the particles diameter of the core is about 16nm and the thickness of the shells is about 6-8 nm, and the specific surface area is 24 m2/g.


Sign in / Sign up

Export Citation Format

Share Document