scholarly journals Fucosterol of Marine Macroalgae: Bioactivity, Safety and Toxicity on Organism

Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 545
Author(s):  
Maria Dyah Nur Meinita ◽  
Dicky Harwanto ◽  
Gabriel Tirtawijaya ◽  
Bertoka Fajar Surya Perwira Negara ◽  
Jae-Hak Sohn ◽  
...  

Fucosterol (24-ethylidene cholesterol) is a bioactive compound belonging to the sterol group that can be isolated from marine algae. Fucosterol of marine algae exhibits various biological activities including anti-osteoarthritic, anticancer, anti-inflammatory, anti-photoaging, immunomodulatory, hepatoprotective, anti-neurological, antioxidant, algicidal, anti-obesity, and antimicrobial. Numerous studies on fucosterol, mainly focusing on the quantification and characterization of the chemical structure, bioactivities, and health benefits of fucosterol, have been published. However, there is no comprehensive review on safety and toxicity levels of fucosterol of marine algae. This review aims to discuss the bioactivities, safety, and toxicity of fucosterol comprehensively, which is important for the application and development of fucosterol as a bioactive compound in nutraceutical and pharmaceutical industries. We used four online databases to search for literature on fucosterol published between 2002 and 2020. We identified, screened, selected, and analyzed the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses method and identified 43 studies for review. Despite the potential applications of fucosterol, we identified the need to fill certain related research gaps. Fucosterol exhibited low toxicity in animal cell lines, human cell lines, and animals. However, studies on the safety and toxicity of fucosterol at the clinical stage, which are required before fucosterol is developed for the industry, are lacking.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Masuma M. Hakim ◽  
Illa C. Patel

Abstract Background From the last few years, the development and discovery of bioactive compounds and their potential properties from marine algae have been enhanced significantly. The coastal area is a huge storehouse for propitious algae. It has been the genuine reality that the consequence of marine algae as a source of different compounds is increasing. Main body Numerous advanced research devices are available for the discovery of synthetic compounds but still many researchers are working on natural bioactive compounds to discover their biological properties, which are useful to society. Marine algae are taking the preponderance of consideration from investigators owing to its phenomenon of biological activity like anti-cancer, anti-viral, cholesterol-reducing, and many more. A variety of compounds are collected from algae with specific purposes as they remain in an extremely ambitious and hard state; this condition is responsible for the synthesis of very particularly effective bioactive compounds. The present article is concentrating on the brown algae of the Gujarat coast, phlorotannins, polyphenol, phytosterol from brown algae, and their various applications. The main importance has been given to the secondary metabolites and various applications of marine brown algae. Conclusion From this review, it can be concluded that the prominent bioactive compounds from brown algae can cure many serious diseases. Besides, the potential biological activities of a special bioactive compound may represent the interest in the industry of pharmaceuticals, cosmeceutical, and functional foods.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2187
Author(s):  
Marius Emil Rusu ◽  
Ionel Fizesan ◽  
Anca Pop ◽  
Andrei Mocan ◽  
Ana-Maria Gheldiu ◽  
...  

Walnut (Juglans regia L.) septum represents an interesting bioactive compound source by-product. In our study, a rich phenolic walnut septum extract, previously selected, was further examined. The tocopherol content determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed higher amounts of α-tocopherol compared to γ- and δ-tocopherols. Moreover, several biological activities were investigated. The in vitro inhibiting assessment against acetylcholinesterase, α-glucosidase, or lipase attested a real management potential in diabetes or obesity. The extract demonstrated very strong antimicrobial potential against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enteritidis. It also revealed moderate (36.08%) and strong (43.27%) antimutagenic inhibitory effects against TA 98 and TA 100 strains. The cytotoxicity of the extract was assessed on cancerous (A549, T47D-KBluc, MCF-7) and normal (human gingival fibroblasts (HGF)) cell lines. Flow cytometry measurements confirmed the cytotoxicity of the extract in the cancerous cell lines. Additionally, the extract demonstrated antioxidant activity on all four cell types, as well as anti-inflammatory activity by lowering the inflammatory cytokines (interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1 β (IL-1β)) evaluated in HGF cells. To the best of our knowledge, most of the cellular model analyses were performed for the first time in this matrix. The results prove that walnut septum may be a potential phytochemical source for pharmaceutical and food industry.


2020 ◽  
Vol 24 (22) ◽  
pp. 2665-2693
Author(s):  
Dipayan Mondal ◽  
Pankaj Lal Kalar ◽  
Shivam Kori ◽  
Shovanlal Gayen ◽  
Kalpataru Das

Indole moiety is often found in different classes of pharmaceutically active molecules having various biological activities including anticancer, anti-viral, anti-psychotic, antihypertensive, anti-migraine, anti-arthritis and analgesic activities. Due to enormous applications of indole derivatives in pharmaceutical chemistry, a number of conventional synthetic methods as well as green methodology have been developed for their synthesis. Green methodology has many advantages including high yields, short reaction time, and inexpensive reagents, highly efficient and environmentally benign over conventional methods. Currently, the researchers in academia as well as in pharmaceutical industries have been developing various methods for the chemical synthesis of indole based compounds via green approaches to overcome the drawbacks of conventional methods. This review reflects the last ten years developments of the various greener methods for the synthesis of indole derivatives by using microwave, ionic liquids, water, ultrasound, nanocatalyst, green catalyst, multicomponent reaction and solvent-free reactions etc. (please see the scheme below). Furthermore, the applications of green chemistry towards developments of indole containing pharmaceuticals and their biological studies have been represented in this review.


2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Author(s):  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  
...  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.


2020 ◽  
Vol 17 (7) ◽  
pp. 828-839
Author(s):  
Ganga Reddy Gaddam ◽  
Pramod Kumar Dubey ◽  
Venkata Ramana Reddy Chittireddy

Background:: Indole and pyrazoles are one of the prime structural units in the field of medicinal chemistry and have been reported to exhibit a variety of biological activities specifically anti-cancer. In view of their medicinal significance, we synthesized a conjugate of the two moieties to get access to newer and potential anti-cancer agents. Methods: Indolyl pyrazoles [3-(1,3-diphenyl-1H-pyrazol-4-yl)-2-(1-methyl-1H-indole-3-carbon yl)acrylonitriles] (4a-l) were synthesized by adopting simple and greener protocol and all the synthesized derivatives were docked against Bcl-2 protein and the selected chemical moieties were screened for their cytotoxicity by using the MTT assay. Results: : All the synthesized compounds were docked against BCL-2 protein in order to understand their binding pattern. Among the 12 compounds docked, 4d, 4f, 4h, 4j, and 4l compounds exhibited better protein binding interactions and the same were screened for their anti-cancer activity against A549 (lung) cancer cell lines at a concentration of 100 μM using Doxorubicin as standard. Substitutions such as N-benzyl, N-ethyl groups and halogen groups such as Br, Cl on indole ring showed moderate activity against A-549 cell lines. Conclusion:: Among the 5 indolyl pyrazole derivatives screened, compounds 4h and 4j showed significantly better activity with an IC50 of 33.12 and 34.24 μM, respectively. Further, structural tweaking of the synthesized new chemical entities may lead to potential hit/lead-like molecules.


Author(s):  
Junjian Li ◽  
Lianbao Ye ◽  
Yuanyuan Wang ◽  
Ying Liu ◽  
Xiaobao Jin ◽  
...  

Background: Spirocyclic indoline compounds widely exist in numerous natural products with good biological activities and some drug molecules in many aspects. In recent years, it has attracted extensive attention as potent anti-tumor agents in the fields of pharmacology and chemistry. Objective: In this study, we focused on designing and synthesizing a set of novel 1'-H-spiro[indole-3,4'-piperidine] derivatives, which were evaluated by preliminary bioactivity experiment in vitro and molecular docking. Method: The key intermediate 1'-methylspiro[indoline-3,4'-piperidine] (B4) reacted with benzenesulfonyl chloride with different substituents under alkaline condition to obtain its sulfonyl derivatives (B5-B10). We evaluated their antiproliferative activities against A549, BEL-7402 and HeLa cells by MTT assay. We performed the CDOCKER module in Discovery Studio 2.5.5 software for molecular modeling of compound B5, and investigated the binding of compound B5 with the target proteins from PDB database. Results: The results indicated that compounds B4-B10 exhibited good antiproliferative activities against the above three types of cells, in which compound B5 with chloride atom as electron-withdrawing substituent on a phenyl ring showed the highest potency against BEL-7402 cells (IC50=30.03±0.43 μg/mL). By binging of the prominent bioactive compound B5 to CDK, c-Met, EGFR protein crystals, The binding energy of B5 with these three types receptors are -44.3583 kcal/mol, - 38.3292 kcal/mol, -33.3653 kcal/mol respectively. Conclusion: Six 1'-methylspiro[indoline-3,4'-piperidine] derivatives were synthesized and evaluated against BEL-7402, A- 549, HeLa cell lines. Compound B5 showed significant inhibition on BEL-7402 cell lines. Molecular docking revealed that B5 showed good affinity by the good fitting between B5 and these three targets with amino acid residues in active sites which encourage us to conduct further evaluation such as the kinase experiment.


2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


2020 ◽  
Vol 17 (1) ◽  
pp. 66-74
Author(s):  
Seghira Bisset ◽  
Widad Sobhi ◽  
Chawki Bensouici ◽  
Abdelhalim Khenchouche

Background: Several researches have shown that therapeutic compounds or phytochemicals from natural sources are important in the food as it is valuable in pharmaceutical industries due to their fewer side effects and potent against various diseases. Curcumin, a major polyphenol derived from turmeric spice, which used in many foods, has a wide range of biological activities, with quite a safety. Objective: The goal of this study was to investigate the antioxidant, urate-lowering, and antiinflammatory effects of pure curcumin. Methods: The antioxidant activity was evaluated for chain-breaking antioxidant effect (radicalscavenging and reducing abilities assays) and for preventive antioxidant effect with metal chelating assay, the urate-lowering was assayed on aspectrophotometer by measuring the inhibition of uric acid production by xanthine oxidase (XO) enzyme, and the anti-inflammatory effect was estimated using in vitro albumin denaturation inhibition. Results: Curcumin showed a significant and good chain-breaking antioxidant effect, both in free radical- scavenging assays (Galvinoxyl radical, ABTS, and hydroxyl radical), and in reducing abilities methods (reducing power, Cupric ion reducing antioxidant capacity and O-phenanthroline assays). In preventive antioxidant effect, assessed with the metal chelating assay, curcumin showed significant effect but with high concentration compared with standard. In the xanthine/xanthine oxidase system, curcumin significantly inhibited uric acid production (IC50=0.71 ± 0.06 mg/mL). Regarding antiinflammatory activity, curcumin showed significant inhibition of albumin denaturation with an IC50 value of 1181.69 ± 1.11μg/mL. Conclusion: These results indicated that curcumin showed promising antioxidant, anti-gout and antiinflammatory properties and might be used as potential, natural drugs against oxidative and inflammation- related diseases.


2020 ◽  
Vol 16 ◽  
Author(s):  
Délis Galvão Guimarães ◽  
Arlan de Assis Gonsalves ◽  
Larissa Araújo Rolim ◽  
Edigênia Cavalcante Araújo ◽  
Victória Laysna dos Anjos Santos ◽  
...  

Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, then the modification at their redox center is an interesting strategy to overcome such harmful activity. Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β-lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity. Method: The semisynthetic hydrazones were obtained and had their molecular structures established by NMR, IR, and MS. Anticancer activity was evaluated by cell viability determined by reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The electrochemical studies, mainly cyclic voltammetry, were performed, in aprotic and protic media. Result: The study showed that the compounds 2, 3, and 4 were active against at least one of the cancer cell lines evaluated, being compounds 3 and 4 the most cytotoxic. Toward HL-60 cells, compound 3 was 20x more active than β-lapachone, and 3x more cytotoxic than doxorubicin. Furthermore, 3 showed an SI value of 39.62 for HL-60 cells. Compound 4 was active against all cancer cells tested, with IC50 values in the range 2.90–12.40 μM. Electrochemical studies revealed a profile typical of self-protonation and reductive cleavage, dependent on the supporting electrolyte. Conclusion: These results therefore indicate that compounds 3 and 4 are strong candidates as prototypes of new antineoplastic drugs.


2019 ◽  
Vol 19 (11) ◽  
pp. 1399-1404 ◽  
Author(s):  
Yangcheng Liu ◽  
Wei Liu ◽  
Changlan Chen ◽  
Zheng Xiang ◽  
Hongwei Liu

Background and Purpose:: Patrinia villosa Juss is an important Chinese herbal medicine widely used for thousands of years, but few reports on the ingredients of the herb have been presented. In this study, we aim to isolate the bioactive compound from the plant. Material and Methods:: The air-dried leaves of P. villosa (15kg) were extracted three times with 70% EtOH under reflux. The condensed extract was suspended in H2O and partitioned with light petroleum, dichloromethane and n-BuOH. The dichloromethane portion was then subjected to normal-phase silica gel column chromatography, ODS silica gel column chromatography and semi-preparative HPLC to yield compound 1. Cytotoxicities of 1 were assayed on HepG2, A549 and A2780 cell lines. The mechanism of apoptosis and cell cycle on A549 was confirmed subsequently. Results: A new impecylone (Impecylone A) was isolated from the leaves of Patrinia villosa Juss, and its structures were established using 1D, 2D-NMR spectra and HR-ESI-MS. Impecylone A could selectivity inhibit HepG2 and A549 cell lines. The compound could induce apoptosis of A549 and arrest the cell cycle at G2/M phase in a dose-dependent manner. Conclusion: Impecylone A is a novel compound from Patrinia villosa Juss and could be a potential antitumor agent especially in the cell lines of A549.


Sign in / Sign up

Export Citation Format

Share Document