scholarly journals Influences of Technological Parameters on Cross-Flow Nanofiltration of Cranberry Juice

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 329
Author(s):  
Dat Quoc Lai ◽  
Nobuhiro Tagashira ◽  
Shoji Hagiwara ◽  
Mitsutoshi Nakajima ◽  
Toshinori Kimura ◽  
...  

The paper focused on the influence of operative conditions on the separation of benzoic acid from 10 °Brix cranberry juice by cross-flow nanofiltration with a plate and frame pilot scale (DDS Lab Module Type 20 system). Six kinds of commercial nanofiltration membrane were investigated. The results showed that the rejection of benzoic acid was significantly lower than that of other components in cranberry juice, including sugars and other organic acids. In a range of 2–7.5 L/min, feed flow rate slightly affected the performance of nanofiltration. Higher temperatures resulted in higher permeate flux and lower rejection of benzoic acid, whereas rejection of sugar and organic acid was stable at a high value. In a range of 2.5–5.5, pH also significantly affected the separation of benzoic acid and negative rejection against benzoic acid was observed at pH 4.5 with some of the membranes. This implies that pH 4.5 is considered as an optimum pH for benzoic acid separation from cranberry juice. The lower permeate flux caused a lower rejection of benzoic acid and negative rejection of benzoic acid was observed at the low permeate flux. Pretreatment by ultrafiltration with CR61PP membranes could improve the permeate flux but insignificantly influenced the efficiency of separation. The results also indicated that NF99 and DK membranes can be effectively used to separate benzoic acid from cranberry juice.

2012 ◽  
Vol 441 ◽  
pp. 584-588
Author(s):  
San Chuan Yu ◽  
Zhi Wen Chen ◽  
Mei Hong Liu ◽  
Jing Wei Zhao

In view of the water shortage, the increasingly severe regulations as well as the release thresholds, it is becoming increasingly necessary to reuse the textile effluents. This work concerned the treatment of textile plant effluent after conventional biological processing by membrane technology for water reuse. Desal5 DK nanofiltration (NF) membrane and BW30 reverse osmosis (RO) membrane were investigated in this study in terms of COD and color removal, salinity reduction as well as permeate flux through cross-flow permeation tests. The results showed that the Desal5 DK nanofiltration membrane exhibited higher stabilized water permeability and flux decline than the reverse osmosis membrane because of its higher porosity and tendency towards fouling. The BW30 reverse osmosis membrane reduced salinity to a great extent than the Desal5 DK nanofiltration membrane. While the nanofiltration membrane exhibited better COD removal efficiency compared to the RO membrane, possibly due to its sieving removal mechanism. The treated water with good enough quality could be recycled back into the process, thereby offering economical benefits by reducing the water consumption and wastewater treatment cost.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
N. Fatihah M. Roli ◽  
Hafizuddin W. Yussof ◽  
Syed M. Saufi ◽  
Mazrul N. Abu Seman ◽  
Abdul W. Mohammad

Xylose is an intermediate product in xylitol production and glucose interferes in the process of separation. Thus the aim of this study is to investigate the performance of pilot scale commercial spiral wound NF membrane namely Desal-5 DK, Desal-5 DL and NF90 for separation of xylose from glucose. Separation of xylose and glucose model solutions was done in a pilot scale cross-flow system, using a commercial nanofiltration (NF) membrane with molecular weight cut off (MWCO) ranging from 150 to 1000 g/mol. The model solution consists of 1:1 ratio of xylose to glucose at 10 g/L each diluted in ultrapure water. The filtration was operated in total recycled mode at 10 bar. The sugar concentration was analyzed using high performance liquid chromatography (HPLC). From this study, the pure water permeability (PWPs) of the Desal-5 DK membrane was considerably higher at 6.78 ± 0.06 than PWPs of the Desal-5 DL and NF90 membranes at 1.28 ± 0.24 and 1.33 ± 0.05, respectively. The Desal-5 DK also gave the higher xylose separation factor at 1.17 as compare to Desal-5 DL (0.81) and NF90 membranes (0.84). This indicates that membrane Desal-5 DK was the most selective membrane to separate xylose form glucose. Overall, it can be concluded that the spiral wound nanofiltration membrane offers cost-effective and easy-maintenance, which has a potential in xylose-glucose separation.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 367-372
Author(s):  
J. Meier ◽  
T. Neymann ◽  
T. Melin

A new process combination integrating adsorption on powdered adsorbent into a nanofiltration process is applied to landfill leachate treatment on a pilot scale. Lab scale experiments have shown that the permeate flux is significantly increased by the application of a flushing procedure combining permeate back flushing and feed and air cross flow flushing. In this paper an optimisation strategy for the flushing procedure is described and first experimental results are presented. These results indicate that the cross flow flushing velocity and the number of permeate side pressure pulses are the major factors of the flushing procedure.


2001 ◽  
Vol 43 (10) ◽  
pp. 233-240 ◽  
Author(s):  
I. Koyuncu ◽  
E. Kural ◽  
D. Topacik

This paper presents the pilot scale membrane separation studies on dyehouse effluents of textile industry. Nanofiltration (NF) membranes which have 2 m2 of surface area were evaluated for membrane fouling on permeate flux and their suitability in separating COD, color and conductivity in relation to operating pressure and feed concentration from textile industry dyehouse effluents. Successive batch runs demonstrated that any serious membrane fouling was not experienced for NF membrane tested in treating this type of wastewater. The permeate flux was found to increase significantly with operating pressure. Flux decreased with increasing recovery rate. The overall removal efficiencies of COD, color and conductivity were found as greater than 97%. COD was lower than 10 mg/l at 12 bar pressures. Permeate COD was also increased with increasing recovery and COD was 30 mg/l with recovery of 80%. Almost complete color removal was achieved with nanofiltration membrane. Color value was also decreased from 500 Pt-Co to 10 Pt-Co unit. This significant reduction in color and COD makes possible the recycle of the permeate in the dyehouse. Permeate conductivity was decreasing with increasing pressure and retention of conductivity increases with increasing pressures. This phenomenon is expected from the analysis of conductivity mass transport model. Economical analysis have been done and the total estimated cost will be 0.81 $/m3 based on 1000 m3/day of and this value is very economical for Istanbul City due to increasing industrial water supply tariffs.


Author(s):  
D. W. Cheah ◽  
N. Ramlee ◽  
A. L. Desa ◽  
N. Misdan ◽  
N. H. H. Hairom

Almost every manufacturing process is the major origin of wastewater with certain characteristic. Printing facility provides a wide range of waste component that is harmful to the environment and people. Those harmful waste component contains high concentration of heavy metals and dye. This paper presents one of the most promising methods to remove the heavy metals and dyes from a printing wastewater before discharging to the environment. The feasibility of commercially available NF270 membrane to treat both heavy metals and dye was thoroughly investigated. The study was carried out using a cross-flow nanofiltration membrane system at operating pressure and temperature set at 5 bar and 24 ˚C, respectively.  Experimental results showed that the permeate flux of NF270 is decreased from 6.2 to 5.0 L/m2.h after 1-h operation. Whilst, the rejection of both iron and zinc ions could be obtained up to 96.9% and 97.8%, respectively. Additionally, almost complete elimination of colour (99.6%) could be achieved using NF270 membrane. Thus, it can be concluded that the commercial NF270 membrane is promising in removing both heavy metal ions and dye from printing wastewater.


2018 ◽  
Vol 69 (5) ◽  
pp. 1149-1151
Author(s):  
Laura Ruxandra Zicman ◽  
Elena Neacsu ◽  
Felicia Nicoleta Dragolici ◽  
Catalin Ciobanu ◽  
Gheorghe Dogaru ◽  
...  

Ultrafiltration of untreated and pretreated aqueous radioactive wastes was conducted using a spiral-wound polysulphonamide membrane. The influence of process factors on its performances was experimental studied and predicted. Permeate volumetric flux and permeate total suspended solids (TSS) were measured at different values of feed flow rate (7 and 10 m3/h), operating pressure (0.1-0.4 MPa), and feed TSS (15 and 60 mg/L). Permeate flux (42-200 L/(m2�h)) increased with feed flow rate and operating pressure as well as it decreased with an increase in feed TSS, whereas permeate TSS (0.1-33.2 mg/L) exhibited an opposite trend. A 23 factorial plan was used to establish correlations between dependent and independent variables of ultrafiltration process.


1995 ◽  
Vol 60 (12) ◽  
pp. 2074-2084
Author(s):  
Petr Mikulášek

The microfiltration of a model fluid on an α-alumina microfiltration tubular membrane in the presence of a fluidized bed has been examined. Following the description of the basic characteristic of alumina tubular membranes, model dispersion and spherical particles used, some comments on the experimental system and experimental results for different microfiltration systems are presented. From the analysis of experimental results it may be concluded that the use of turbulence-promoting agents resulted in a significant increase of permeate flux through the membrane. It was found out that the optimum porosity of fluidized bed for which the maximum values of permeate flux were reached is approximately 0.8.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 354
Author(s):  
Jaime A. Arboleda Mejia ◽  
Jorge Yáñez-Fernandez

In this study, fresh orange prickly pear juice (Opuntia spp.) was clarified by a cross-flow microfiltration (MF) process on a laboratory scale. The viability of the process—in terms of productivity (permeate flux of 77.80 L/h) and the rejection of selected membranes towards specific compounds—was analyzed. The quality of the clarified juice was also analyzed for total antioxidants (TEAC), betalains content (mg/100 g wet base), turbidity (NTU) and colorimetry parameters (L, a*, b*, Croma and H). The MF process permitted an excellent level of clarification, reducing the suspended solids and turbidity of the fresh juice. In the clarified juice, a decrease in total antioxidants (2.03 TEAC) and betalains content (4.54 mg/100 g wet basis) was observed as compared to the fresh juice. Furthermore, there were significant changes in color properties due to the effects of the L, a*, b*, C and h° values after removal of turbidity of the juice. The turbidity also decreased (from 164.33 to 0.37 NTU).


Author(s):  
Laslo Šereš ◽  
Ljubica Dokić ◽  
Bojana Ikonić ◽  
Dragana Šoronja-Simović ◽  
Miljana Djordjević ◽  
...  

Cross-flow microfiltration using ceramic tubular membrane was applied for treatment of steepwater from corn starch industry. Experiments are conducted according to the faced centered central composite design at three different transmembrane pressures (1, 2 and 3 bar) and cross-flow velocities (100, 150 and 200 L/h) with and without the usage of Kenics static mixer. For examination of the influence of the selected operating conditions at which usage of the static mixer is justified, a response surface methodology and desirability function approach were used. Obtained results showed improvement in the average permeate flux by using Kenics static mixer for 211 % to 269 % depending on experimental conditions when compared to the system without the static mixer. As a result of optimization, the best results considering flux improvement as well as reduction of specific energy consumption were obtained at low transmembrane pressure and lower feed cross-flow rates.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhammadameen Hajihama ◽  
Wirote Youravong

Tuna cooking juice is a co-product of tuna canning industry. It riches in protein, currently used for production of feed meal as well as protein hydrolysate. The finish products are usually in the form of concentrate, produced by evaporation process. However, evaporation is energy consumable process and the salt content level of the concentrate is often over the standard, thus required additional process for lowering salt content e.g. crystallization. The use of membrane technology, therefore, is of interest, since it required less energy and footprint compared with evaporation and is also able to reduce salt content of the concentrate. The aim of this study were to employ and select the membrane filtration process, and optimize the operating condition for protein concentration and desalination of tuna cooking juice. The results indicated that nanofiltration (NF) was more suitable than the ultrafiltration (UF) process, regarding the ability in protein recovery and desalination. The NF performance was evaluated in terms of permeation flux and protein and salt retentions. The protein and salt rejections of NF were 96 % and 5 %, respectively. The permeate flux(J) increased as transmembrane pressure (TMP) or cross flow rate (CFR) increased and the highest flux was obtained at TMP of 10 bar and CFR of 800 L/h. Operating with batch mode, the permeate flux was found to decrease as protein concentration increased, and at volume concentration factor about 4, the protein concentration  about 10% while salt removal was aproximately 70 % of the initial value. This work clearly showed that NF was successfully employed for concentration and desalination of protein derived from tuna cooking juice.


Sign in / Sign up

Export Citation Format

Share Document