scholarly journals Effect of Incremental Utilization of Unground Sea Sand Ore on the Consolidation and Reduction Behavior of Vanadia–Titania Magnetite Pellets

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 269
Author(s):  
Zhenxing Xing ◽  
Gongjin Cheng ◽  
Zixian Gao ◽  
He Yang ◽  
Xiangxin Xue

In the iron and steel industry, improving the usage amount of New Zealand sea sand ore as a raw material for ironmaking can reduce the production costs of iron and steel enterprises to a certain extent. In this paper, New Zealand sea sand ore without any grinding pretreatment was used as a raw material, oxidized pellets were prepared by using a disc pelletizer, and the effect of sea sand ore on the performance of green pellets and the metallurgical properties of oxidized pellets was investigated. The effects of sea sand ore on the compressive strength, falling strength, compressive strength of oxidized pellets, and reduction performance were mainly investigated. X-Ray Diffraction (XRD) patterns and Scanning Electron Microscope (SEM) analysis methods were used to discuss the influence of sea sand ore on the microstructure of the pellets’ oxidation and reduction process. As the amount of sea sand ore used increased, the compressive strength of green pellets was gradually decreased, and the falling strength of green pellets and the compressive strength of oxidized pellets were gradually increased. When the amount of sea sand ore used was 40%, the reduction swelling index of pellets was 16.31%. The increase of sea sand ore used made the reduction of pellets suppressed and the reduction rate decreased. When the amount of sea sand ore used increased to 40%, the reduction degree of sea sand ore pellets was only 60.06%. The experimental results in this paper provide specific experimental data for the large-scale application of New Zealand sea sand ore in the blast furnace ironmaking process.


2020 ◽  
Vol 117 (4) ◽  
pp. 411
Author(s):  
Zhenxing Xing ◽  
Gongjin Cheng ◽  
Zixian Gao ◽  
He Yang ◽  
Xiangxin Xue

In the iron and steel industry, improving the usage amount of New Zealand sea sand ore as a raw material for ironmaking can reduce the production costs of iron and steel enterprises to a certain extent. In this paper, the New Zealand sea sand ore without any grinding pretreatment was used as raw material, oxidized pellets were prepared by using a disc pelletizer, and the experimental conditions for preparing oxidized pellets were investigated and optimized. The effects of binder dosages, roasting temperature and roasting time on the properties of pellets were mainly investigated, and the effects of roasting temperature and roasting time on the microstructure of oxidized pellets was discussed by researching XRD patterns and SEM-EDS. With the increase of binder dosages, the drop strength of green pellets and the compressive strength of oxidized pellets were gradually increased. With the increase of roasting temperature and roasting time, the compressive strength of oxidized pellets increased gradually. When the amount of New Zealand sea sand ore was increased to 40–50%, the optimal process conditions for the preparation of oxidized pellets were as follows: the dosage of binder was 1.5%, the roasting temperature was 1200 °C, and the roasting time was 20 min.



Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87 ◽  
Author(s):  
Gong-jin Cheng ◽  
Zhen-xing Xing ◽  
He Yang ◽  
Xiang-xin Xue

The New Zealand sea sand ore is a kind of vanadia–titania magnetite formed by erosion in the coastal zone. Because of its coarse particle size, smooth spherical particles, complex chemical composition, it has been added to sinter as an auxiliary material. Based on the principle of optimizing ore blending to strengthen advantages and weaken disadvantages, this paper used New Zealand sea sand raw ore that has not undergone any pretreatment as the main material and prepared it into oxidized pellets using a disc pelletizer and explored the influence of high-proportion unground sea sand ore on the preparation process and reduction performance of oxidized pellets. The influence of unground sea sand ore on the falling strength, compressive strength, reduction swelling index, and reduction degree of pellets was analyzed by the ICPAES, XRF, XRD, SEM-EDS, and other detection methods, and the change laws and influencing factors of oxidized pellets were analyzed. With the increase of the amount of unground sea sand ore used, the falling strength and compressive strength of the green pellets first decreased and then gradually increased, while the compressive strength of the oxidized pellets first increased and then decreased. At the same time, as the amount of sea sand ore used increased, the reduction process of pellets was restricted. The reduction swelling index and the reduction degree index generally show a downward trend. However, the compressive strength of the pellets gradually increased after reduction. Through the research on the pellet-forming performance and reduction properties of unground sea sand ore, it is shown that when the amount of unground sea sand ore used was 40%, it can still be used as raw material for blast furnace ironmaking. Thus, this research provided specific data support for iron and steel enterprises to improve the ratio of unground sea sand ore and reduce production cost.



2020 ◽  
Vol 787 (12) ◽  
pp. 66-71
Author(s):  
H.N. Mammadov ◽  
◽  
I.H. Suleymanova ◽  
B.M. Tahirov ◽  
◽  
...  

The properties of high-strength artificial porous aggregate from glass-containing waste of metallurgical productions are described. The developed technology makes it possible to expand the raw material base for the production of aggregates for light concrete. Granulated slags of metallurgical productions – the main (M0>1) slags of the Novokuznetsk Iron and Steel Plant and acid (M0<1) slags of the Gorky plant are studied. According to the results of studies, it was found that the optimal swelling interval for acidic slags is 1000–1100оC, and for basic slags-1100–1150оC. A high – strength artificial porous aggregate-slag gravel with a bulk density of 340–780 kg/m3 and a compressive strength in the cylinder of 2.8–12.3 MPa was obtained. The main physical and mechanical properties of the resulting aggregate, which meets the requirements of the current standard GOST 9757–90 “Gravel, crushed stone and sand. Artificial porous”, were studied. The aggregate obtained is almost twice as strong as the known aggregate of expanded clay gravel. With the use of porous gravel and sand, light concrete of strength class B7,5–B40 and a density of 1100–1600 kg/m3 was obtained.



2017 ◽  
Vol 36 (10) ◽  
pp. 971-978
Author(s):  
Tiejun Chun ◽  
Hongming Long ◽  
Zhanxia Di ◽  
Qingmin Meng ◽  
Ping Wang

AbstractPyrite cinder is a solid waste generated by the sulfuric acid industry and is considered environmentally hazardous. It contains abundant iron, such as Fe2O3 and Fe3O4, and nonferrous metals, such as zinc, lead and copper. In order to try and recycle this material as a source of Fe units, preparation of direct reduction iron (DRI) using pyrite cinder was investigated by coal-based grate rotary kiln process. This process includes chloridizing and reduction roasting. The results show that 97 % lead was removed after the chloridizing process. Copper was only detached in chloridizing process with the removal rate of 78.49 %. Furthermore, the removal of zinc was carried out in both chloridizing and reduction process, and the removal rate of 96.76 % was achieved after reduction roasting. The final product representing a metallization degree of 93.36 % with compressive strength of 1,198 N/pellet was obtained after the oxidized pellets were reduced at 1,050 °C for 80 min.



2018 ◽  
Vol 115 (5) ◽  
pp. 511
Author(s):  
Shaoyan Hu ◽  
Rong Zhu ◽  
Kai Dong ◽  
Runzao Liu ◽  
Nan Jiang

Chrome ore smelting reduction process in converter for crude stainless steel production has won increasing attention because of utilizing cheap chrome ore as raw material instead of ferrochromium alloy, which can reduce the production cost significantly. Thermodynamic and kinetic mechanisms of chrome ore smelting reduction have been well investigated by previous studies. How to improve the dissolution rate and reduction rate of chrome ore in actual production is the key problem of industrial application. In this paper, a method of using combustion flame to convey chrome ore powder was studied. Numerical simulation works were carried out to study the structure of top blown burner lance blowing propane combustion flame and chrome ore powder simultaneously. Optimal design of burner lance was confirmed and made for experiment. Flame measurement experiment was carried out to study the flame characteristics before and after powder addition, indicating that the addition of powder helps to prolong the flame length. Then a pilot experiment of chrome ore smelting reduction was carried out in a 0.5 ton submerged arc furnace, metallurgical effects under conditions with and without combustion flame were compared and analyzed. The results showed that the combustion flame can not only preheat the chrome ore powder, but also heat the molten slag of impact zone, obtaining better reaction rate and higher chrome ore yield.



2012 ◽  
Vol 532-533 ◽  
pp. 262-266 ◽  
Author(s):  
Zhu Cheng Huang ◽  
Dao Guang Yang ◽  
Ling Yun Yi

Burden in gas-based direct reduction process is iron ore oxide pellet, which has experienced oxide roasting and cooling before reduction. However, it would be heated again in the reduction process. This may cause much energy waste and adverse effects on reduction process. In this paper, roasted pellets with and without cooling were charged for gas-based reduction respectively. The reduction rate and compressive strength during reduction were studied to reveal the effects of charging methods. Results showed that there is little difference on reduction rate between the two. However, the compressive strength of reduced pellets via thermal charging improves obviously. And nucleation and growth mechanisms of iron crystal grain in gas-based reduction were investigated by optical microscope (Leica DMRXP). The iron crystal nucleuses firstly form at the interface of grains and edge of wustite, and then gradually grow from surface layer to inner core as reduction proceeds. Thermal charging can promote the migration and accumulation of iron crystal grain effectively.



2011 ◽  
Vol 230-232 ◽  
pp. 164-167 ◽  
Author(s):  
Yan Liu ◽  
Mao Fa Jiang ◽  
De Yong Wang

This paper describes the concept of the construction of steelmaking shop, which is carried out as part of a modernization plan aimed at creating a 21st century environmental-friendly iron and steel works, designs the smelting reduction process of producing stainless steel crude melts in a 150 t converter and presents an outline of the equipment specifications and the conditions of operation, according to the blowing conditions of 185 t smelting reduction converter of No.4 steelmaking shop in Chiba Works of JFE Steel. In the future, a rational production system will be constructed by flexible selection of raw materials in response to changing stainless steel raw material prices and further improvement in productivity and quality, making the maximum use of functions of the equipment.



1979 ◽  
Vol 39 (4) ◽  
pp. 911-937 ◽  
Author(s):  
Robert C. Allen

In the middle of the nineteenth century Britain was the major supplier of iron and steel to the world market, while Germany and the United States were substantial importers. But by 1913 German exports had exceeded British exports—with American exports not far behind—and Britain had become a major importer of steel. The goal of this paper is to explain this change in the pattern of trade. Its method is, first, to establish that the pattern of trade reflected the pattern of iron and steel prices prevailing in the three countries, and, second, to account for the pricing pattern in terms of international differences in input prices, technical efficiency, and deviations between price and unit production costs. I shall demonstrate that Britain's mid-century export success was due to its superior technical efficiency and lower raw material prices, and to the enormous excess profits earned by the German iron industry during its mid-century period of rapid economic growth. Britain's decline as an exporter was due to a reversal of this favorable situation: after 1900 the British industry was considerably less efficient than the German and American industries, and it labored under the burden of higher raw material prices. I shall argue, however, that vigorous entrepreneurs could have overcome both of these disadvantages.



2009 ◽  
Vol 160 (7) ◽  
pp. 195-200
Author(s):  
Reto Hefti

In the mountainous canton Grisons, much visited by tourists, the forest has always had an important role to play. New challenges are now presenting themselves. The article goes more closely into two themes on the Grisons forestry agenda dominating in the next few years: the increased use of timber and climate change. With the increased demand for logs and the new sawmill in Domat/Ems new opportunities are offered to the canton for more intensive use of the raw material, wood. This depends on a reduction in production costs and a positive attitude of the population towards the greater use of wood. A series of measures from the Grisons Forestry Department should be of help here. The risk of damage to infrastructure is particularly high in a mountainous canton. The cantonal government of the Grisons has commissioned the Forestry Department to define the situation concerning the possible consequences of global warming on natural hazards and to propose measures which may be taken. The setting up of extensive measurement and information systems, the elaboration of intervention maps, the estimation of the danger potential in exposed areas outside the building zone and the maintenance of existing protective constructions through the creation of a protective constructions register, all form part of the government programme for 2009 to 2012. In the Grisons, forest owners and visitors will have to become accustomed to the fact that their forests must again produce more wood and that, on account of global warming, protective forests will become even more important than they already are today.



Author(s):  
SAFITRI NURHIDAYATI ◽  
RIZKI AMELYA SYAM

This study aims to analyze whether the difference that occurs in the cost of raw materials, direct labor, and factory overhead costs between the standard costs and the actual costs in PLTU LATI is a difference that is favorable or unfavorable. Data collection techniques with field research and library research. The analytical tool used is the analysis of the difference in raw material costs, the difference in direct labor costs and the difference in factory overhead costs. The hypothesis in this study is that the difference allegedly occurs in the cost of raw materials, direct labor costs, and factory overhead costs at PT Indo Pusaka Berau Tanjung Redeb is a favorable difference. The results showed that the difference in the cost of producing MWh electricity at PT Indo Pusaka Berau Tanjung Redeb in 2018, namely the difference in the price of raw material costs Rp. 548,029.80, - is favorable, the difference in quantity of raw materials is Rp. 957,216,602, - is (favorable) , the difference in direct labor costs Rp 2,602,642,084, - is (unfavorable), and the difference in factory overhead costs Rp 8,807,051,422, - is (favorable) This shows that the difference in the overall production cost budget is favorable or profitable. This beneficial difference shows that the company is really able to reduce production costs optimally in 2018.  



Sign in / Sign up

Export Citation Format

Share Document