scholarly journals The Effects of Iron-Bearing Intermetallics on the Fitness-for-Service Performance of a Rare-Earth-Modified A356 Alloy for Next Generation Automotive Powertrains

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 788
Author(s):  
Joshua Stroh ◽  
Dimitry Sediako ◽  
David Weiss

Aimed at improving the tensile strength and creep resistance of a rare earth-modified A356 alloy, this study adjusted the Mg and Mn concentration in the alloy, specifically aiming to transform the harmful Al5FeSi and Al9FeSi3Mg5 phase into Al15(Fe,Mn)3Si2. It was found that lowering the Mg concentration from 0.49 to 0.25 wt.% and raising the Mn concentration from 0.10 to 0.41 wt.% resulted in a near complete transformation of the Fe-bearing phases. This transformation led to a greater total volume fraction of Fe-intermetallics (2.9 to 4.1%), without affecting the volume fraction of the desirable, temperature-resistant, AlSiRE phase. Moreover, the chemistry modification led to a shift in the morphology of the AlSiRE phase while reducing its size. Combined with the decreased volume fraction of the harmful Fe precipitates, the chemistry modification improved the yield strength (YS), ultimate tensile strength (UTS) and modulus of elasticity by ~14%, 9%, and 10%, respectively. In addition, the steady-state creep rates of the high Mn alloy were lower at all stresses as compared to the low Mn alloy and the fracture stress was ~15 MPa higher, reaching 100% of the alloy’s original 250 °C YS.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anna Galler ◽  
Semih Ener ◽  
Fernando Maccari ◽  
Imants Dirba ◽  
Konstantin P. Skokov ◽  
...  

AbstractCerium-based intermetallics are currently attracting much interest as a possible alternative to existing high-performance magnets containing scarce heavy rare-earth elements. However, the intrinsic magnetic properties of Ce in these systems are poorly understood due to the difficulty of a quantitative description of the Kondo effect, a many-body phenomenon where conduction electrons screen out the Ce-4f moment. Here, we show that the Ce-4f shell in Ce–Fe intermetallics is partially Kondo screened. The Kondo scale is dramatically enhanced by nitrogen interstitials suppressing the Ce-4f contribution to the magnetic anisotropy, in striking contrast to the effect of nitrogenation in isostructural intermetallics containing other rare-earth elements. We determine the full temperature dependence of the Ce-4f single-ion anisotropy and show that even unscreened Ce-4f moments contribute little to the room-temperature intrinsic magnetic hardness. Our study thus establishes fundamental constraints on the potential of cerium-based permanent magnet intermetallics.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110077
Author(s):  
Chao Du ◽  
Cuirong Liu ◽  
Xu Yin ◽  
Haocheng Zhao

Herein, we synthesized a new polyethylene glycol (PEG)-based solid polymer electrolyte containing a rare earth oxide, CeO2, using mechanical metallurgy to prepare an encapsulation bonding material for MEMS. The effects of CeO2 content (0–15 wt.%) on the anodic bonding properties of the composites were investigated. Samples were analyzed and characterized by alternating current impedance spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, tensile strength tests, and anodic bonding experiments. CeO2 reduced the crystallinity of the material, promoted ion migration, increased the conductivity, increased the peak current of the bonding process, and increased the tensile strength. The maximum bonding efficiency and optimal bonding layer were obtained at 8 wt% CeO2. This study expands the applications of solid polymer electrolytes as encapsulation bonding materials.


2011 ◽  
Vol 145 ◽  
pp. 1-5 ◽  
Author(s):  
K.W. Neoh ◽  
Kim Yeow Tshai ◽  
P.S. Khiew ◽  
Chin Hua Chia

Extensive environmental concern associated with the disposal of solid plastic wastes has stirred tremendous interest in the production and use of sustainable biodegradable polymers. Among the vast variety of available materials, Polylactic Acid (PLA) standout as the most commercially viable mass produced resin to date. However, its low thermal and mechanical stability, excessive brittleness, and relatively higher cost have led to numerous research efforts in producing biodegradable polymer composite filled with natural organic fibers. This paper describes the preparation and the mechanical characteristics of a compression molded biodegradable composite made entirely of renewable raw materials. The composites were reinforced with pulverized palm, kenaf and alkali (1M NaOH:fiber in ratio 2:1) treated kenaf fibers, at a fiber mass proportion of 20 to 60% blended PLA and processed in a custom-built compression mold. SEM microscan revealed that the kenaf fiber has a mean diameter of 40μm, length 1236.6μm, and aspect ratio of 31 while the measured values for palm fiber was 58.7μm, 1041.2μm, and 17.7, respectively. All resulting composites showed significant enhancement in tensile strength. At 20, 40 and 60% fiber loading, the palm/PLA composite recorded tensile strength increment of 46.9, 47.8 and 36.6%, respectively. For the kenaf/PLA composite, greatest improvement was achieved at 40% fiber loading with alkali treated kenaf, with approximately 54% higher than the neat PLA while only 12.6% was recorded for the non-treated kenaf/PLA composite, signifying that the surface modification greatly improved fiber-matrix adhesion. SEM observations on the fracture surface showed similar findings. Compared to commercially available palm/Polypropylene (palm/PP) composite at 50% fiber loading, our measured tensile strength for the PLA composite loaded with 40% alkali treated kenaf fiber was still about 20% lower. Further enhancement in the mechanical characteristic of the kenaf/PLA composite is required to push for its wider utilization in the polymer industry.


2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.


2016 ◽  
Vol 838-839 ◽  
pp. 546-551
Author(s):  
Junya Kobayashi ◽  
Yumenori Nakashima ◽  
Koh Ichi Sugimoto ◽  
Goroh Itoh

The substitution of Si with Al in 0.2%C-1.5%Si-1.25%Mn-0.2%Cr ultrahigh strength transformation-induced plasticity (TRIP)-aided martensitic (TM) sheet steel improves galvanization. The effect of Al content on the microstructure and formabilities of the TM steel was therefore investigated. Replacement of Si with Al maintained the high volume fraction of the retained austenite and the high stretch-formability and stretch-flangeability, whereas it decreased the tensile strength. Complex addition of Si and Al yielded the best formabilities with 1.5 GPa tensile strength grade. The superior formabilities of Si-Al bearing TM steel were attributed to the strain-induced transformation of the metastable retained austenite and the relatively soft lath-martensite structure matrix. The former leads to plastic relaxation of the localized stress concentrations, thus suppressing void formation.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


Author(s):  
M. Chomiak

Purpose: of this paper is to develop a new generation of polymer composite materials that would ensure the use of residual and serious environmental problems of polyester-glass laminate waste. Design/methodology/approach: The glass reinforced polyester waste was ground and added to produce new composites. Thermoplastic - high impact polystyrene was selected for the composite matrix. Composites containing 10, 20, 30% by weight of the filler of polyester-glass laminate powder were made. The process of extrusion and subsequent injection was used to prepare the test samples. The influence of the filler on selected properties of composites was evaluated. The physical properties of the filler as well as the processing properties of the mixture as well as the mechanical properties - impact strength and tensile strength of the obtained composites were investigated. Findings: A decrease in tensile strength and impact strength was observed along with an increase in the amount of filler. Research limitations/implications: It would be interesting to carry out further analyzes, in particular with a higher volume fraction of the filler or with a different composite structure, e.g. using PVC as a matrix. The developed research topic is a good material for the preparation of publications of a practical and scientific nature, especially useful in the research and industrial environment. Practical implications: The shredded glass-polyester waste can be used as a filler of polystyrene, however, the resulting composite could be used to produce parts with slightly less responsible functions such as artificial jewelery or toy elements. Originality/value: Obtained results are a new solution a global waste management solution for glass reinforced polyester waste, which may contribute to the sustainable development of the composite materials industry through the partial utilization of waste composites with a duroplastic matrix.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


Sign in / Sign up

Export Citation Format

Share Document