scholarly journals Mass Spectrometry-Based Metabolomic and Lipidomic Analysis of the Effect of High Fat/High Sugar Diet and GreenshellTM Mussel Feeding on Plasma of Ovariectomized Rats

Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 754
Author(s):  
Maryam Abshirini ◽  
Diana Cabrera ◽  
Karl Fraser ◽  
Parkpoom Siriarchavatana ◽  
Frances M. Wolber ◽  
...  

This study aimed to examine the changes in lipid and metabolite profiles of ovariectomized (OVX) rats with diet-induced metabolic syndrome-associated osteoarthritis (MetOA) after supplementation with greenshell mussel (GSM) using an untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics approach. Ninety-six rats were fed with one of four diets: control, control supplemented with GSM + GSM, high fat/high sugar (HFHS), or high fat/high sugar enriched with GSM (HFHS + GSM). After 8 weeks on experimental diets, half of the rats in each group underwent OVX and the other half were sham operated. After being fed for an additional 28 weeks, blood samples were collected for the metabolomics analysis. Lipid and polar metabolites were extracted from plasma and analysed by LC-MS. We identified 29 lipid species from four lipid subclasses (phosphatidylcholine, lysophosphatidylcholine, diacylglycerol, and triacylglycerol) and a set of eight metabolites involved in amino acid metabolism (serine, threonine, lysine, valine, histidine, pipecolic acid, 3-methylcytidine, and cholic acid) as potential biomarkers for the effect of HFHS diet and GSM supplementation. GSM incorporation more specifically in the control diet generated significant alterations in the levels of several lipids and metabolites. Further studies are required to validate these findings that identify potential biomarkers to follow OA progression and to monitor the impact of GSM supplementation.

2020 ◽  
Vol 10 (17) ◽  
pp. 6131
Author(s):  
Parkpoom Siriarchavatana ◽  
Marlena C. Kruger ◽  
Matthew R. Miller ◽  
Hong (Sabrina) Tian ◽  
Frances M. Wolber

The prevalence of metabolic osteoarthritis has been increasing worldwide, particularly among women. The aim of this study was to investigate the effects of the New Zealand greenshell mussel (Perna canaliculus; GSM) on osteoarthritis (OA) prevention in a rat model. One-hundred-and-eight female rats aged 12 weeks were divided into four test groups, containing 24 rats each, plus an additional control group. Each test group received one of the four experimental diets: normal control diet (ND), normal control diet supplemented with GSM (ND + GSM), high fat/high sugar diet (HFHS), or high fat/high sugar diet supplemented GSM (HFHS + GSM), for 36 weeks (end of the study). After 8 weeks on experimental diets, half of each group was subjected to ovariectomy (OVX) and the remaining half received a sham operation (ovaries left intact). The study evaluated body composition, bone mass, plasma cytokines, adipokines, HbA1c, CTX-II, and knee joint’s histopathology. HFHS diet and OVX significantly induced body weight gain and leptin production. OVX rats lost bone mineral density but increased adiponectin, HbA1C, and MCP-1. The OVX rats fed HFHS showed the highest Mankin scores. Importantly, inclusion of GSM reduced these pathological features. In conclusion, GSM might be beneficial in halting the progression of OA.


2020 ◽  
Vol 178 (2) ◽  
pp. 311-324
Author(s):  
Marisa Pfohl ◽  
Lishann Ingram ◽  
Emily Marques ◽  
Adam Auclair ◽  
Benjamin Barlock ◽  
...  

Abstract Perfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.5% kcal from fat) or a high fat (58% kcal from fat) high carbohydrate (42 g/l) diet with or without PFOS or PFHxS in feed (0.0003% wt/wt) for 29 weeks. Lipidomic, proteomic, and gene expression profiles were determined to explore lipid outcomes and hepatic mechanistic pathways. With administration of a high-fat high-carbohydrate diet, PFOS and PFHxS increased hepatic expression of targets involved in lipid metabolism and oxidative stress. In the blood, PFOS and PFHxS altered serum phosphatidylcholines, phosphatidylethanolamines, plasmogens, sphingomyelins, and triglycerides. Furthermore, oxidized lipid species were enriched in the blood lipidome of PFOS and PFHxS treated mice. These data support the hypothesis that PFOS and PFHxS increase the risk of metabolic and inflammatory disease induced by diet, possibly by inducing dysregulated lipid metabolism and oxidative stress.


2019 ◽  
Vol 128 (03) ◽  
pp. 144-151 ◽  
Author(s):  
Marwa Hassan Muhammad ◽  
Noha Ibrahim Hussien ◽  
Sania K. Elwia

Abstract Background & Aim Dyslipidaemia is highly prevalent among postmenopausal women and its management represents a keystone in the prevention of the worldwide increase in cardiovascular morbidity and mortality. Therapy choices for menopause-associated dyslipidaemia are limited and a matter of debate. So, it becomes prudent to search for natural safe alternatives. Vitamin D (VD) has been acknowledged as an essential factor in cardiovascular health. Thus, we aimed to illustrate the impact of different VD status on dyslipidaemia and atherogenic indices. Method 5 groups of rats were conducted; SHAM group fed control diet, ovariectomized rats fed control diet (OVX), ovariectomized rats fed VD-sufficient-high fat diet (HFD) (1 000 IU/ kg diet), ovariectomized rats fed VD-deficient-HFD (25 IU/ kg diet), and ovariectomized rats fed VD-replete-HFD (10 000 IU/ kg diet) for 16 weeks. Results Dyslipidaemia with an increased atherogenic index of plasma, atherosclerosis coefficient, cardiac risk ratio, and aortic total cholesterol accumulation in addition to reduced serum 25-hydroxy-VD levels was observed in the OVX and VD-sufficient HFD versus SHAM. These findings were aggravated by VD-deficient-HFD while reversed by VD-replete-HFD. The VD-mediated abundance of aortic ATP-binding cassette transporter A1 (ABCA1) expression, reduced activity of the inflammatory Jun N-terminal kinases (JNK), and downregulation of aortic cluster of differentiation-36 (CD36) receptors expression together with increased serum total antioxidant capacity and reduced serum malondialdehyde were among the supposed mechanisms. Conclusions Our study sheds light on alarming levels of VD deficiency among ovariectomized rats. VD repletion improved the menopause-associated dyslipidaemia and atherogenic indices through hypolipidemic, antioxidant, and anti-inflammatory effects.


2019 ◽  
Vol 10 ◽  
Author(s):  
Dominika Stygar ◽  
Dorian Andrare ◽  
Barbara Bażanów ◽  
Elżbieta Chełmecka ◽  
Tomasz Sawczyn ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
O. Merino ◽  
R. Sánchez ◽  
B. M. Gregorio ◽  
F. J. Sampaio ◽  
J. Risopatrón

Obesity has adverse effects on male fertility and usually is diagnosed with a prevalence of vitamin D deficiency (VD-). Discussion on the impact of obesity/VD- on sperm function has been limited. This study analyzed the effects of diet-induced obesity/VD- on viability and plasma membrane integrity (PMI), superoxide anion (O2-) level, and DNA fragmentation (DNAfrag) in sperm Sprague-Dawley rats. The males were randomized into four groups and fed for a period of 12 weeks: G1: control diet with vitamin D (C/VD+), G2: control diet without vitamin D (C/VD-), G3: high-fat diet with vitamin D (HF/VD+), and G4: high-fat diet without vitamin D (HF/VD-). Sperm function parameters were analyzed by flow cytometry. PMI percentages and O2- levels were not affected by any of the diets. DNA fragmentation was increasing significantly (p<0.05) in the spermatozoa of animals with diets vitamin D deficient (G2) and diet-induced obesity (G4). Our results allow us to point out that diet-induced obesity and VD- produce greater damage in DNA sperm of rats. The use of nutraceuticals containing vitamin D could be reducing the risk of fragmentation of DNA in spermatozoa.


2020 ◽  
Author(s):  
Daniel J. Silver ◽  
Gustavo A. Roversi ◽  
Nazmin Bithi ◽  
Chase K. A. Neumann ◽  
Katie M. Troike ◽  
...  

AbstractGlioblastoma (GBM) remains among the deadliest of human malignancies. The emergence of the cancer stem cell (CSC) phenotype represents a major challenge to disease management and durable treatment response. The extrinsic, environmental, and lifestyle factors that result in CSC enrichment are not well understood. The CSC state endows cells with a fluid metabolic profile, enabling the utilization of multiple nutrient sources. Therefore, to test the impact of diet on CSC enrichment, we evaluated disease progression in tumor-bearing mice fed an obesity-inducing high-fat diet (HFD) versus an energy-balanced, low-fat control diet. HFD consumption resulted in hyper-aggressive disease that was accompanied by CSC enrichment and shortened survival. HFD consumption also drove intracerebral accumulation of saturated fats, which in turn inhibited the production and signaling of the gasotransmitter hydrogen sulfide (H2S). H2S is an endogenously produced bio-active metabolite derived from sulfur amino acid catabolism. It functions principally through protein S-sulfhydration and regulates a variety of programs including mitochondrial bioenergetics and cellular metabolism. Inhibition of H2S synthesis resulted in increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to cytotoxicity and death of cultured GBM cells. Compared to non-cancerous controls, patient GBM specimens were reduced in overall protein S-sulfhydration, which was primarily lost from proteins regulating cellular metabolism. These findings support the hypothesis that diet-regulated H2S signaling serves to suppress GBM by restricting metabolic adaptability, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.One Sentence SummaryConsumption of a high-fat diet (HFD) accelerates glioblastoma (GBM) by inhibiting the production and signaling of the tumor-suppressive metabolite hydrogen sulfide (H2S).


2018 ◽  
Vol 10 (4) ◽  
pp. 502-506 ◽  
Author(s):  
R. Tarevnic ◽  
F. Ornellas ◽  
C. A. Mandarim-de-Lacerda ◽  
M. B. Aguila

AbstractWe aimed to evaluate the impact of maternal exercise training on the offspring metabolism and body size caused by father obesity. C57BL/6 male 4-week-old mice were fed a high-fat diet (HF father) or control diet (C father), while equal age female mice were fed only a C diet and were separated into two groups: trained (T mother) and non-trained (NT mother), and at 12 weeks of age mice were mated. A continuous swimming protocol was applied for 10 weeks (before and during gestation), and offspring were followed since weaning until sacrifice (at 12 weeks of age). HF father, compared to C father, showed obesity, elevated total cholesterol (TC) and triglycerides (TG), and glucose intolerance. Both sexes HF/NT offspring showed hyperglycemia, glucose intolerance and high levels of TC and TG, without obesity. However, HF/T offspring showed data close to C/NT, demonstrating the beneficial effect of maternal exercise in the offspring of obese fathers.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Francisca Echeverría ◽  
Rodrigo Valenzuela ◽  
Andrés Bustamante ◽  
Daniela Álvarez ◽  
Macarena Ortiz ◽  
...  

Pharmacological therapy for nonalcoholic fatty liver disease (NAFLD) is not approved at the present time. For this purpose, the effect of combined eicosapentaenoic acid (EPA; 50 mg/kg/day) modulating hepatic lipid metabolism and hydroxytyrosol (HT; 5 mg/kg/day) exerting antioxidant actions was evaluated on hepatic steatosis and oxidative stress induced by a high-fat diet (HFD; 60% fat, 20% protein, and 20% carbohydrates) compared to a control diet (CD; 10% fat, 20% protein, and 70% carbohydrates) in mice fed for 12 weeks. HFD-induced liver steatosis (i) was reduced by 32% by EPA, without changes in oxidative stress-related parameters and mild recovery of Nrf2 functioning affording antioxidation and (ii) was decreased by 42% by HT, concomitantly with total regain of the glutathione status diminished by HFD, 42% to 59% recovery of lipid peroxidation and protein oxidation enhanced by HFD, and regain of Nrf2 functioning, whereas (iii) combined EPA + HT supplementation elicited 74% reduction in liver steatosis, with total recovery of the antioxidant potential in a similar manner than HT. It is concluded that combined HT + EPA drastically decreases NAFLD development, an effect that shows additivity in HT and EPA effects that mainly relies on HT, strengthening the impact of oxidative stress as a central mechanism underlying liver steatosis in obesity.


Sign in / Sign up

Export Citation Format

Share Document