scholarly journals Flexible Microfluidics: Fundamentals, Recent Developments, and Applications

Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 830 ◽  
Author(s):  
Hedieh Fallahi ◽  
Jun Zhang ◽  
Hoang-Phuong Phan ◽  
Nam-Trung Nguyen

Miniaturization has been the driving force of scientific and technological advances over recent decades. Recently, flexibility has gained significant interest, particularly in miniaturization approaches for biomedical devices, wearable sensing technologies, and drug delivery. Flexible microfluidics is an emerging area that impacts upon a range of research areas including chemistry, electronics, biology, and medicine. Various materials with flexibility and stretchability have been used in flexible microfluidics. Flexible microchannels allow for strong fluid-structure interactions. Thus, they behave in a different way from rigid microchannels with fluid passing through them. This unique behaviour introduces new characteristics that can be deployed in microfluidic applications and functions such as valving, pumping, mixing, and separation. To date, a specialised review of flexible microfluidics that considers both the fundamentals and applications is missing in the literature. This review aims to provide a comprehensive summary including: (i) Materials used for fabrication of flexible microfluidics, (ii) basics and roles of flexibility on microfluidic functions, (iii) applications of flexible microfluidics in wearable electronics and biology, and (iv) future perspectives of flexible microfluidics. The review provides researchers and engineers with an extensive and updated understanding of the principles and applications of flexible microfluidics.

Soft Matter ◽  
2021 ◽  
Author(s):  
Emily Cross ◽  
Sophie M Coulter ◽  
Sreekanth Pentlavalli ◽  
Garry Laverty

The use of hydrogels has garnered significant interest as biomaterial and drug delivery platforms for anti-infective applications. For decades antimicrobial peptides have been heralded as a much needed new class...


2020 ◽  
Vol 16 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Eshwaran Narayanan

Exosomes are nanoscale extracellular vesicles that encapsulate a diverse range of biomolecules such as nucleic acids, proteins, and lipids. They are involved in several biological processes and mediate intracellular communication. Recent reports that they exhibit unique traits in pathological conditions have generated significant interest in employing them as diagnostic and therapeutic tools. Particularly, their potential to serve as drug delivery vehicles for the treatment of cancer and other diseases has been explored in numerous studies. This manuscript reviews recent developments in the field and discusses important considerations for further refinement of this approach and realization of more effective exosome-based drug delivery systems.


2022 ◽  
Vol 1 ◽  
Author(s):  
Santiago Nahuel Chanquia ◽  
Alessia Valotta ◽  
Heidrun Gruber-Woelfler ◽  
Selin Kara

In the last years, there were two fields that experienced an astonishing growth within the biocatalysis community: photobiocatalysis and applications of flow technology to catalytic processes. Therefore, it is not a surprise that the combination of these two research areas also gave place to several recent interesting articles. However, to the best of our knowledge, no review article covering these advances was published so far. Within this review, we present recent and very recent developments in the field of photobiocatalysis in continuous flow, we discuss several different practical applications and features of state-of-the art photobioreactors and lastly, we present some future perspectives in the field.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 38
Author(s):  
Duygu Çimen ◽  
Merve Asena Özbek ◽  
Nilay Bereli ◽  
Bo Mattiasson ◽  
Adil Denizli

Cryogels are interconnected macroporous materials that are synthesized from a monomer solution at sub-zero temperatures. Cryogels, which are used in various applications in many research areas, are frequently used in biomedicine applications due to their excellent properties, such as biocompatibility, physical resistance and sensitivity. Cryogels can also be prepared in powder, column, bead, sphere, membrane, monolithic, and injectable forms. In this review, various examples of recent developments in biomedical applications of injectable cryogels, which are currently scarce in the literature, made from synthetic and natural polymers are discussed. In the present review, several biomedical applications of injectable cryogels, such as tissue engineering, drug delivery, therapeutic, therapy, cell transplantation, and immunotherapy, are emphasized. Moreover, it aims to provide a different perspective on the studies to be conducted on injectable cryogels, which are newly emerging trend.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2015 ◽  
Vol 21 (22) ◽  
pp. 3181-3190 ◽  
Author(s):  
Juan Yan ◽  
Chongya Hu ◽  
Xunwei Liu ◽  
Jian Zhong ◽  
Gang Sun ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


2020 ◽  
Vol 9 (1) ◽  
pp. 700-715 ◽  
Author(s):  
Wei Jian ◽  
David Hui ◽  
Denvid Lau

AbstractRecent advances in biomedicine largely rely on the development in nanoengineering. As the access to unique properties in biomaterials is not readily available from traditional techniques, the nanoengineering becomes an effective approach for research and development, by which the performance as well as the functionalities of biomaterials has been greatly improved and enriched. This review focuses on the main materials used in biomedicine, including metallic materials, polymers, and nanocomposites, as well as the major applications of nanoengineering in developing biomedical treatments and techniques. Research that provides an in-depth understanding of material properties and efficient enhancement of material performance using molecular dynamics simulations from the nanoengineering perspective are discussed. The advanced techniques which facilitate nanoengineering in biomedical applications are also presented to inspire further improvement in the future. Furthermore, the potential challenges of nanoengineering in biomedicine are evaluated by summarizing concerned issues and possible solutions.


Sign in / Sign up

Export Citation Format

Share Document