scholarly journals Antibody Immobilization in ZnO-Thin Film Transistors for Low-Cost Biosensors Applications

2021 ◽  
Vol 4 (1) ◽  
pp. 23
Author(s):  
Rafael Antonio Salinas Domínguez ◽  
Ovier Obregón Hinostroza ◽  
Abdú Orduña Díaz ◽  
Miguel Ángel Domínguez Jiménez

The antibody immobilization with low-cost materials and label-free methods are a challenge for the fabrication of biosensor devices. In this work, it was developed a strategy for antibody immobilization on ZnO TFTs over polyethylene terephthalate (PET) as a recyclable plastic substrate. Antibodies were biofunctionalized using a label-free strategy for E. coli detection. The use of a recyclable plastic substrate PET enables the compatibility with flexible electronics that could contribute for a low-cost biosensor useful in rural communities that do not have the necessary infrastructure and trained personnel for pathogenic bacterial detection in food or water.

RSC Advances ◽  
2016 ◽  
Vol 6 (92) ◽  
pp. 88967-88973 ◽  
Author(s):  
Yuna Guo ◽  
Yu Wang ◽  
Su Liu ◽  
Jinghua Yu ◽  
Qianqian Pei ◽  
...  

A novel label-free, low cost electrochemical biosensor for highly sensitive and selective detection of E. coli has been developed based on rolling circle amplification coupled silver nanoclusters as effective electrochemical probe.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


1987 ◽  
Vol 19 (10) ◽  
pp. 51-59 ◽  
Author(s):  
W. V. Alexander ◽  
A. Wood

South Africa is a relatively water-short country which has many rural communities with water-borne sewage infrastructures requiring low technology treatment facilities. In order to protect the water resources of the country the authorities have set high standards for effluent quality (COD < 75 mg/l, NH3 < 10 mg/l, E. coli < 1000 and in some areas P < 1 mg/l). Traditionally, oxidation ponds have been used in these applications but have not been able to consistently meet the required standards and recently interest has been shown in artificial wetlands as a low technology means of solving the problem. As a result several experimental projects are at present being initiated in South Africa, both as primary and secondary treatment for domestic sewage and also as a tertiary treatment to remove nitrogen, phosphorus and E. coli from conventional sewage plant effluents. The designs of these experimental projects are described in the paper and it is hoped that data will be available for presentation at the seminar.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


Biosensors ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Donggee Rho ◽  
Seunghyun Kim

An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.


Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


2020 ◽  
Vol 150 ◽  
pp. 111905 ◽  
Author(s):  
Jinfeng Zhu ◽  
Zhengying Wang ◽  
Shaowei Lin ◽  
Shan Jiang ◽  
Xueying Liu ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Lin Teng ◽  
Xian Wang ◽  
Xiaojun Wang ◽  
Honglei Gou ◽  
Lihui Ren ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


Sign in / Sign up

Export Citation Format

Share Document