Dynamic Behavior of MEMS Resonators

2014 ◽  
Vol 658 ◽  
pp. 694-699
Author(s):  
Marius Pustan ◽  
Corina Birleanu ◽  
Florina Rusu ◽  
Simion Haragâş

MEMS resonator represents currently one of the important research areas of Microelectromechanical Systems (MEMS). The usual applications of MEMS resonators are the radio-frequency electromechanical devices, MEMS gyroscopes and resonant sensors. The main part of a MEMS resonator is the mechanical vibrating structure that can be fabricated as microcantilevers, microbridges or in a more complex configuration as micromembranes. The scope of this paper is to investigate the dynamic behavior of an electrostatically actuated MEMS cantilever under different oscillating modes in order to determine the resonant frequency, amplitude and velocity of oscillations. Moreover, based on the resonant frequency experimental curves, the quality factor for different oscillating modes is determined. The effect of operating conditions on the frequency response of investigated microcantilever is monitored. As a consequence, the experimental tests are performed both in ambient conditions and in vacuum. The dynamic response of microcantilever in vacuum is influenced by the intrinsic dissipation energy and the sample behavior in air depends on the intrinsic losses as well as the extrinsic dissipation energy.

2021 ◽  
Vol 4 (1) ◽  
pp. 30
Author(s):  
Marius Pustan ◽  
Corina Birleanu ◽  
Florina Serdean

The influence of the driving electrode positions on the dynamic response of polysilicon MEMS resonators used in biosensing applications is studied as a function of the operating conditions (vacuum versus free-air operating mode). The scope of this research work is orientated towards identifying the effect of driving electrode position on the dynamic response of sensing MEMS used in biomass detection. The mass-deposition detection is based on the change in the resonant frequency of vibrating elements considering a biological detection film deposited on the oscillating structure. The operating conditions, such as medium pressure, change the behavior of the dynamic response including the resonant frequency, the amplitude, and the velocity of oscillations as well as the quality factor and the loss of energy. The change in the dynamic response of the investigated MEMS cantilevers as a function of the lower electrode position and operating conditions is evaluated using a Polytec Laser Vibrometer. The decrease in the amplitude and velocity of the oscillations if the lower electrode is moved from the beam free-end toward the beam anchor is experimentally monitored. The changes in the response of samples in vacuum are slightly influenced by the electrode position compared with the response of the same sample in ambient conditions. Moreover, the effect of oscillating modes (first, second and third modes) is taken into consideration to improve the dynamical detection of the investigated samples. The obtained results indicate that different responses of MEMS resonators can be achieved if the position of the driving electrode is moved from the cantilever free-end toward the anchor. Indeed, the resonator stiffness, velocity and amplitude of oscillations are significantly modified for samples oscillating in ambient conditions for biological detection compared with their response in vacuum.


Author(s):  
Karim M. Masri ◽  
Mohammad I. Younis ◽  
Shuai Shao

Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction.


Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 449 ◽  
Author(s):  
Marco Demori ◽  
Marco Baù ◽  
Marco Ferrari ◽  
Vittorio Ferrari

Coil-coupled passive sensors can be interrogated without contact, exploiting the magnetic coupling between two coils forming a telemetric proximity link. A primary coil connected to the interface circuit forms the readout unit, while a passive sensor connected to a secondary coil forms the sensor unit. This work is focused on the interrogation of sensor units based on resonance, denoted as resonant sensor units, in which the readout signals are the resonant frequency and, possibly, the quality factor. Specifically, capacitive and electromechanical piezoelectric resonator sensor units are considered. Two interrogation techniques, namely a frequency-domain technique and a time-domain technique, have been analyzed, that are theoretically independent of the coupling between the coils which, in turn, ensure that the sensor readings are not affected by the interrogation distance. However, it is shown that the unavoidable parasitic capacitance in parallel to the readout coil introduces, for both techniques, an undesired dependence of the readings on the interrogation distance. This effect is especially marked for capacitance sensor units. A compensation circuit is innovatively proposed to counteract the effects of the parasitic input capacitance, and advantageously obtain distance-independent readings in real operating conditions. Experimental tests on a coil-coupled capacitance sensor with resonance at 5.45 MHz have shown a deviation within 1.5 kHz, i.e., 300 ppm, for interrogation distances of up to 18 mm. For the same distance range, with a coil-coupled quartz crystal resonator with a mechanical resonant frequency of 4.432 MHz, variations of less than 1.8 Hz, i.e., 0.5 ppm, have been obtained.


Author(s):  
David Noel ◽  
Mathieu Ritou ◽  
Sebastien Le Loch ◽  
Benoit Furet

The aeronautic industry requires high speed and high power spindles to obtain high material removal rates during long rough milling operations. The weakness of HSM spindle is the bearings, although high precision hybrid ball bearings have been developed to achieve this critical application. Inadequate use of spindles inevitably leads to shortened lifetimes. Choosing the operating conditions is a required step before machining applications. It can be achieved through either experimental tests or numerical modeling that leads to stability lobe diagrams. Stability of cuts relies on the dynamic behavior of the spindle, which is particularly due to the eigenfrequencies of the tool-shaft assembly. The frequencies depend on bearing stiffness that can change under operating conditions. That is why the impact of cutting conditions and bearing parameters on its stiffness are studied in the paper. A five degrees of freedom model of angular ball bearing is briefly presented. A complete bearing model is introduced. The originality of the approach is the complete technological modeling, notably of the radial expansions of inner and outer rings of bearing. A non-linear expression is established from continuum mechanics model. The influence of geometry of bearing, operating conditions and design parameters of spindle on the bearing stiffness are established and analysed. Then, modal analyses of the tool-spindle assembly are carried out in relation to the varying bearing stiffness. Finally, significance of the approach is demonstrated through the analyses of Frequency Response Function.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2585
Author(s):  
Jessica Guadalupe Tobal-Cupul ◽  
Estela Cerezo-Acevedo ◽  
Yair Yosias Arriola-Gil ◽  
Hector Fernando Gomez-Garcia ◽  
Victor Manuel Romero-Medina

The Mexican Caribbean Sea has potential zones for Ocean Thermal Energy Conversion (OTEC) implementation. Universidad del Caribe and Instituto de Ciencias del Mar y Limnologia, with the support of the Mexican Centre of Innovation in Ocean Energy, designed and constructed a prototype OTEC plant (OTEC-CC-MX-1 kWe), which is the first initiative in Mexico for exploitation of this type of renewable energy. This paper presents a sensitivity analysis whose objective was to know, before carrying out the experimental tests, the behavior of OTEC-CC-MX-1 kWe regarding temperature differences, as well as the non-possible operating conditions, which allows us to assess possible modifications in the prototype installation. An algorithm was developed to obtain the inlet and outlet temperatures of the water and working fluid in the heat exchangers using the monthly surface and deep-water temperature data from the Hybrid Coordinate Ocean Model and Geographically Weighted Regression Temperature Model for the Mexican Caribbean Sea. With these temperatures, the following were analyzed: fluctuation of thermal efficiency, mass flows of R-152a and water and power production. By analyzing the results, we verified maximum and minimum mass flows of water and R-152a to produce 1 kWe during a typical year in the Mexican Caribbean Sea and the conditions when the production of electricity is not possible for OTEC-CC-MX-1 kWe.


Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2042
Author(s):  
Wojciech Kacalak ◽  
Igor Maciejewski ◽  
Dariusz Lipiński ◽  
Błażej Bałasz

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.


Sign in / Sign up

Export Citation Format

Share Document