scholarly journals The Potential Application of Endophytes in Management of Stress from Drought and Salinity in Crop Plants

2021 ◽  
Vol 9 (8) ◽  
pp. 1729
Author(s):  
Hariom Verma ◽  
Dharmendra Kumar ◽  
Vinod Kumar ◽  
Madhuree Kumari ◽  
Sandeep Kumar Singh ◽  
...  

Endophytic microorganisms present inside the host plant play an essential role in host fitness, nutrient supply and stress tolerance. Endophytes are often used in sustainable agriculture as biofertilizers, biopesticides and as inoculants to mitigate abiotic stresses including salinity, drought, cold and pH variation in the soil. In changing climatic conditions, abiotic stresses create global challenges to achieve optimum crop yields in agricultural production. Plants experience stress conditions that involve endogenous boosting of their immune system or the overexpression of their defensive redox regulatory systems with increased reactive oxygen species (ROS). However, rising stress factors overwhelm the natural redox protection systems of plants, which leads to massive internal oxidative damage and death. Endophytes are an integral internal partner of hosts and have been shown to mitigate abiotic stresses via modulating local or systemic mechanisms and producing antioxidants to counteract ROS in plants. Advancements in omics and other technologies have been made, but potential application of endophytes remains largely unrealized. In this review article, we will discuss the diversity, population and interaction of endophytes with crop plants as well as potential applications in abiotic stress management.

2021 ◽  
Vol 3 ◽  
Author(s):  
Michael Prabhu Inbaraj

Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and intensive agricultural practices has further aggravated the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants have to get acclimatized to various environmental abiotic stress factors. Though genetic engineering is applied to improve plants tolerance to abiotic stresses, these are long-term strategies, and many countries have not accepted them worldwide. Therefore, use of microbes can be an economical and ecofriendly tool to avoid the shortcomings of other strategies. The microbial community in close proximity to the plant roots is so diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in promoting crop productivity and providing stress tolerance. This mini review highlights and discusses the current knowledge on the role of various microbes and it's tolerance mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ayomide Emmanuel Fadiji ◽  
Olubukola Oluranti Babalola ◽  
Gustavo Santoyo ◽  
Michele Perazzolli

Crop plants are more often exposed to abiotic stresses in the current age of fast-evolving climate change. This includes exposure to extreme and unpredictable changes in climatic conditions, phytosanitary hazards, and cultivation conditions, which results in drastic losses in worldwide agricultural productions. Plants coexist with microbial symbionts, some of which play key roles in the ecosystem and plant processes. The application of microbial biostimulants, which take advantage of symbiotic relationships, is a long-term strategy for improving plant productivity and performance, even in the face of climate change-associated stresses. Beneficial filamentous fungi, yeasts, and bacteria are examples of microbial biostimulants, which can boost the growth, yield, nutrition and stress tolerance in plants. This paper highlights recent information about the role of microbial biostimulants and their potential application in mitigating the abiotic stresses occurring on crop plants due to climate change. A critical evaluation for their efficient use under diverse climatic conditions is also made. Currently, accessible products generally improve cultural conditions, but their action mechanisms are mostly unknown, and their benefits are frequently inconsistent. Thus, further studies that could lead to the more precisely targeted products are discussed.


2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1595
Author(s):  
Khussboo Rahman ◽  
Naznin Ahmed ◽  
Md. Rakib Hossain Raihan ◽  
Farzana Nowroz ◽  
Faria Jannat ◽  
...  

Jute (Corchorus spp.) belongs to the Malvaceae family, and there are two species of jute, C. capsularis and C. olitorious. It is the second-largest natural bast fiber in the world according to production, which has diverse uses not only as a fiber but also as multiple industrial materials. Because of climate change, plants experience various stressors such as salt, drought, heat, cold, metal/metalloid toxicity, and flooding. Although jute is particularly adapted to grow in hot and humid climates, it is grown under a wide variety of climatic conditions and is relatively tolerant to some environmental adversities. However, abiotic stress often restricts its growth, yield, and quality significantly. Abiotic stress negatively affects the metabolic activities, growth, physiology, and fiber yield of jute. One of the major consequences of abiotic stress on the jute plant is the generation of reactive oxygen species, which lead to oxidative stress that damages its cellular organelles and biomolecules. However, jute’s responses to abiotic stress mainly depend on the plant’s age and type and duration of stress. Therefore, understanding the abiotic stress responses and the tolerance mechanism would help plant biologists and agronomists in developing climate-smart jute varieties and suitable cultivation packages for adverse environmental conditions. In this review, we summarized the best possible recent literature on the plant abiotic stress factors and their influence on jute plants. We described the possible approaches for stress tolerance mechanisms based on the available literature.


2021 ◽  
pp. 36-41
Author(s):  
M. S. Kornilova ◽  
D. P. Kurunina ◽  
G. V. Varivoda

Relevance. The soil and climatic conditions of the Lower Trans-Volga region are considered favorable for melon growing and make it possible to obtain high-quality products. The purpose of the research was to create new competitive varieties and hybrids of melon and pumpkin.Materials and methods. The object of the research is new varieties of melon and butternut pumpkin created at the Bykovskaya melon breeding experimental station. Melon cultivar Osen and pumpkin cv. Zhemchuzhina were used as standards. The methods of creation are intervarietal hybridization, individual and mass selection. During the growing season, appropriate observations and counts were carried out.Results. As a result of many years of breeding work at the Bykovskaya cucurbits selection experimental station, a melon cultivar 251 and a pumpkin cultivar 509 have been created. both producers and consumers. Therefore, the obtained varieties were evaluated for taste, yield, resistance to biological and abiofactors of the environment, dry matter content, fruit size, fruit and pulp color. During the comparative assessment of the accessions, it was determined that the new varieties of melon and pumpkin exceed the standards in terms of the main economically valuable traits. The average yield during the study, in the melon cultivar 251, exceeded the standard by 47.8%. In the pumpkin cultivar, the average yield for three years of research exceeded the standard by 69.6%. In terms of taste, the new melon variety was at the level of the standard, the cv. Osen. A variety of butternut pumpkin exceeded the standard in all quality indicators. The susceptibility to powdery mildew in the melon cultivar varied depending on the year of research. The melon sample showed resistance to anthracnose higher than the standard by 16.4 and 18.6%, over the years of study. In the pumpkin cultivar, resistance to powdery mildew and anthracnose was higher than the standard, on average by 34.9% to powdery mildew and by 28.6% to anthracnose. Thus, new varieties of melon and pumpkin meet the modern requirements of the industrial melon industry, are resistant to environmental stress factors, common diseases, and have economically valuable traits.


2019 ◽  
Vol 8 (1) ◽  
pp. 69-75
Author(s):  
Gregory Vasilyevich Mokrikov ◽  
Tatiana Vladimirovna Minnikova ◽  
Kamil Shagidullovich Kazeev ◽  
Sergey Ilyich Kolesnikov

Tillage technologies that promote resource conservation and increase crop yields, especially in conditions of dry climate, are increasingly being introduced into the Russian agriculture. However, taking into account a diversity of soil and climatic conditions in Russia, it is necessary to study the agro-ecological state of agro landscapes. In Russia, in recent years, an increase in the yield of winter wheat and sunflower has been observed. From 2014 to 2018 in production conditions in the Rostov Region, the effect of direct sowing technology (No-Till) on the yield of winter wheat and sunflower was studied. The yield of sunflower and winter wheat largely depended on the amount of precipitation during the critical growing season of each agricultural crop. In 2014-2017 the yield of winter wheat in agrocenoses using direct sowing technology increased by 26-114%, sunflower by 27-92% compared with the traditional technology. The authors show that direct seeding compared to traditional technology of dump plowing (traditional tillage) contributes to saving motor fuel, increasing crop yields and lowering the cost of the main crops of the Rostov Region: winter wheat and sunflower.


1980 ◽  
Vol 12 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Thomas R. Harris ◽  
Harry P. Mapp

Climatic conditions in semiarid regions like the Oklahoma Panhandle result in wide fluctuations in rainfall, dryland crop yields, and returns to agricultural producers in the area. Irrigated crop production increases peracre yields and significantly reduces fluctuations in yields and net returns.Irrigated production of food and fiber in the Oklahoma Panhandle has developed rapidly during the past three decades, increasing from 11,500 to 385,900 acres since 1950 (Schwab). The primary source of irrigation water in the area is the Ogallala Formation, an aquifer underlying much of the Great Plains region. Until the past couple of years, the presence of relatively low cost natural gas led producers to expand irrigated production and apply high levels of water to crops irrigated in the area.


2021 ◽  
Vol 25 (4) ◽  
pp. 381-387
Author(s):  
V. I. Zotikov ◽  
S. D. Vilyunov

The production of pedigree seeds is not only an important but also a cost-effective means of increasing the yield and efficiency of agriculture. The genetic potential of varieties can be unlocked only by choosing those adaptive to the soil and climatic conditions in a particular region, using modern tools for plant protection, and applying balanced mineral nutrition. These are the most important factors determining the performance. In the course of breeding and genetic work, the Federal Scientific Center of Legumes and Groat Crops (FSC LGC) has created new soybean varieties, whose high biological and economic potentials are combined with resistance to stress factors. Despite the close relationship between productivity and growing season duration, the highly productive and early-ripening (100–115 days) soybean varieties raised at FSC LGC can yield 2.5 to 3.5 t/ha, the grain having high contents of protein (37–42 %) and fat (18–22 %), depending on the climatic conditions in a particular year of cultivation. They are less temperature-sensitive than other domestic or foreign varieties. It is important that our soybean varieties are not genetically modified. New pea varieties created at FSC LGC in 2015–2020 differ in growing season duration and morphological features. They are adaptable to the soil and climatic conditions of a region, which ensures the maximum realization of their potential. The main factor in increasing yields and stabilizing the production of buckwheat and millet grain in the Russian Federation is the creation and adaption of new earlyripening and high-yielding varieties of the determinate type adapted to the specific natural and climatic conditions of different regions of Russia.


Author(s):  
Yuriy P. Bondarenko ◽  

In view of the significant increase in grain production in Russia, a methodological approach is proposed to analyze the significance of regional factors of grain crop yield growth in the country in recent years, especially against the background of the lack of expansion of acreage under grain crops. Based on the results of the calculations, the effectiveness of the influence of climatic, financial, infrastructural and production factors on the growth of grain yield was described. It is concluded that various factors had different effects on the growth of grain crop yields in regions with high-, medium - and low-intensity grain production complex. The role of reducing the influence of financial factors on the growth of grain yields and a sharp increase in the role of agro-climatic conditions is noted. The revealed trend of increasing depreciation of fixed assets of agriculture as a whole is particularly emphasized, with a slight increase in the volume of their renewal and modernization in the leading regions in terms of grain crop yield growth. Without taking appropriate measures to reduce the depreciation of fixed assets in the near future, this will result in a sharp decline in the achieved volumes of grain production in the country.


2022 ◽  
pp. 431-442
Author(s):  
Alfred Micheni ◽  
Patrick Gicheru ◽  
Onesmus Kitonyo

Abstract Climate change is any significant change in climatic conditions. Such changes may negatively affect productivity of the rain-fed agriculture practised by over 75% of the smallholder Kenyan farmers. The effect leads to failure to sustainably provide adequate food and revenue to famers. It is on this basis that an almost 8-year field study was conducted to evaluate and scale climate resilient agricultural technological options associated with Conservation Agriculture (CA) systems and practices (no-till; maintenance of permanent soil cover; and crop diversification - rotations and associations), complemented with good agricultural strategies. The activities involved were targeted to sustainably increase productivity of maize-legumes farming systems while reducing environmental risks. The results showed improved soil properties (physical, chemical and health) and consequently increased crop yields and human nutrition by over 30%. Such benefits were attributed to cost savings arising from NT and reduced labour requirement for weed control. This was further based on enhanced crop soil moisture and nutrients availability and use efficiency leading to over 25% yield increase advantage. Apart from the field trials, the study used the Agricultural Production Simulator (APSIM) computer model to simulate CA scenario with the aim of providing potential quick answers to adopting CA practices for farm system productivity. The results were inclusively shared, leading to over 21% increase in the number of farmers adopting the CA practices within and beyond the project sites. The study's overall recommendation affirmed the need to integrate the CA practices into Kenyan farming systems for sustainable agricultural livelihoods and economic opportunities.


Sign in / Sign up

Export Citation Format

Share Document