scholarly journals Peter Neil Temple Wells CBE. 19 May 1936—22 April 2017

2019 ◽  
Vol 66 ◽  
pp. 463-477
Author(s):  
Hywel R. Thomas

Peter Wells will be remembered internationally for his many outstanding contributions in the field of medical ultrasound. He pioneered the development of non-invasive imaging techniques in the development of ultrasonics as a diagnostic and surgical tool. He was the originator and developer of instruments for ultrasonic surgery and ultrasonic power measurement, as well as the two-dimensional, articulated-arm ultrasonic general purpose scanner and the water-immersion ultrasonic breast scanner. He demonstrated ultrasonic-pulsed Doppler range-gating, and was the discoverer of the ultrasonic Doppler signal characteristic of malignant tumour neovascularization. He investigated ultrasonic bioeffects and formulated ultrasonic safety guidelines and conditions for prudent use of ultrasonic diagnosis. His outstanding and sustained achievements in the medical applications of ultrasound extend continuously from the 1960s until a few days before his death at the age of 80. Anyone who has ever benefited from an ultrasound procedure owes a debt of gratitude to Peter Wells.

Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 4264-4288
Author(s):  
Loredana Luvidi ◽  
Fernanda Prestileo ◽  
Michela De Paoli ◽  
Cristiano Riminesi ◽  
Rachele Manganelli Del Fà ◽  
...  

Conservation of hypogea and their accessibility by the visitors is a hard question, due to the interaction of different factors such as the intrinsic characteristics of the hypogeal environments and the presence of public. A particular case is represented by the Mithraeum of Marino Laziale, located a few kilometers away from Rome and accidentally discovered in the 1960s. The uniqueness of the discovery was the presence of a well-preserved painting of the Mithraic scene (II century A.D.) probably due to the oblivion of the place of worship over the centuries as well as the isolation from the outdoor environment. Unfortunately, despite a recent complete restoration and recovery of the archaeological area, which ended in 2015, the area was never open to the visitors and only two years after completing the works it was no longer safe to use. Hence, the need for a new planning of interventions starting from the deep knowledge of this cultural heritage and from the analysis of past incorrect actions to arrive at the opening—without any risk for the archaeological findings and visitors—and management of this site, never exposed to the public. Therefore, since 2018 a diagnostic campaign and microclimate monitoring have been started. The data collected during the two years of investigations have been fundamental to assess the conservation state of the hypogeal environment and the potential risks for the preservation of the three paintings (the Mithraic scene and two dadophores). Long-term monitoring of indoor environmental conditions assumes the role of an essential tool for the planning of preventive conservation strategies but also for the control of the site after its opening to the visitors. Furthermore, the characterization of the microclimate is non-invasive, sufficiently economical and accurate. In this paper, the characterization of surfaces in the Mithraic gallery through optical microscopy, UV fluorescence/imaging techniques, FT-IR spectroscopy, XRD and the microclimatic parameters variation in the presence or absence of visitors are used to define the strategies for the opening and fruition of the Mithraeum. The strategies for the sustainable fruition of this unique archaeological site have been defined through a conservation protocol approved by the Italian Ministry of Cultural Heritage and necessary for the site managers and curators of the Municipality of Marino Laziale to finally support its opening.


2009 ◽  
Vol 5 (2) ◽  
pp. 15
Author(s):  
Wanda Acampa ◽  
Mario Petretta ◽  
Carmela Nappi ◽  
Alberto Cuocolo ◽  
◽  
...  

Many non-invasive imaging techniques are available for the evaluation of patients with known or suspected coronary heart disease. Among these, computed-tomography-based techniques allow the quantification of coronary atherosclerotic calcium and non-invasive imaging of coronary arteries, whereas nuclear cardiology is the most widely used non-invasive approach for the assessment of myocardial perfusion. The available single-photon-emission computed tomography flow agents are characterised by a cardiac uptake proportional to myocardial blood flow. In addition, different positron emission tomography tracers may be used for the quantitative measurement of myocardial blood flow and coronary flow reserve. Extensive research is being performed in the development of non-invasive coronary angiography and myocardial perfusion imaging using cardiac magnetic resonance. Finally, new multimodality imaging systems have recently been developed bringing together anatomical and functional information. This article provides a description of the available non-invasive imaging techniques in the assessment of coronary anatomy and myocardial perfusion in patients with known or suspected coronary heart disease.


2020 ◽  
Vol 26 (32) ◽  
pp. 3915-3927 ◽  
Author(s):  
Stefano Ballestri ◽  
Claudio Tana ◽  
Maria Di Girolamo ◽  
Maria Cristina Fontana ◽  
Mariano Capitelli ◽  
...  

: Nonalcoholic fatty liver disease (NAFLD) embraces histopathological entities ranging from the relatively benign simple steatosis to the progressive form nonalcoholic steatohepatitis (NASH), which is associated with fibrosis and an increased risk of progression to cirrhosis and hepatocellular carcinoma. NAFLD is the most common liver disease and is associated with extrahepatic comorbidities including a major cardiovascular disease burden. : The non-invasive diagnosis of NAFLD and the identification of subjects at risk of progressive liver disease and cardio-metabolic complications are key in implementing personalized treatment schedules and follow-up strategies. : In this review, we highlight the potential role of ultrasound semiquantitative scores for detecting and assessing steatosis severity, progression of NAFLD, and cardio-metabolic risk. : Ultrasonographic scores of fatty liver severity act as sensors of cardio-metabolic health and may assist in selecting patients to submit to second-line non-invasive imaging techniques and/or liver biopsy.


2021 ◽  
Vol 11 (3) ◽  
pp. 1341
Author(s):  
María Higuera ◽  
José M. Perales ◽  
María-Luisa Rapún ◽  
José M. Vega

A review of available results on non-destructive testing of physical systems, using the concept of topological sensitivity, is presented. This mathematical tool estimates the sensitivity of a set of measurements in some given sensors, distributed along the system, to defects/flaws that produce a degradation of the system. Such degradation manifests itself on the properties of the system. The good performance of this general purpose post-processing method is reviewed and illustrated in some applications involving non-destructive testing. These applications include structural health monitoring, considering both elastodynamic ultrasonic guided Lamb waves and active infrared thermography. Related methods can also be used in other fields, such as diagnosis/prognosis of engineering devices, which is also considered.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3645
Author(s):  
Isabel Theresa Schobert ◽  
Lynn Jeanette Savic

With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 508
Author(s):  
José Luis Ruvalcaba-Sil ◽  
Luis Barba ◽  
Edgar Casanova-González ◽  
Alejandro Mitrani ◽  
Margarita Muñoz ◽  
...  

Techinantitla building complex, in the Amanalco neighborhood of the ancient city of Teotihuacan, is famous for the iconography and quality of the mural paintings found in this site. A significant part of this heritage has been lost due to looting. In recent years, an interdisciplinary research project was developed to study the limited patrimony that was left. As part of this study, we first employed geophysical techniques to reconstruct the architectural pattern of the compound’s remaining walls, where other paintings may still be found. Then, we applied a non-invasive methodology to characterize a large set of fragments recovered in the 1980s and to gain information on their pigments and manufacturing techniques. This methodology included False Color Infrared Imaging, X-ray Fluorescence and Fiber-Optics Reflectance Spectroscopy, and led to the identification of hematite, calcite, malachite, azurite and an unidentified blue pigment. The results were compared with a previous study performed on a set of Techinantitla mural paintings looted in the 1960s. A broader comparison with contemporary mural paintings from other Teotihuacan complexes shows good agreement in the materials used. These results may suggest a standardization in the making of Teotihuacan mural painting during the Xolapan period (350 to 550 AD).


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 683
Author(s):  
Matilde Lombardero ◽  
Mario López-Lombardero ◽  
Diana Alonso-Peñarando ◽  
María del Mar Yllera

The cat mandible is relatively small, and its manipulation implies the use of fixing methods and different repair techniques according to its small size to keep its biomechanical functionality intact. Attempts to fix dislocations of the temporomandibular joint should be primarily performed by non-invasive techniques (repositioning the bones and immobilisation), although when this is not possible, a surgical method should be used. Regarding mandibular fractures, these are usually concurrent with other traumatic injuries that, if serious, should be treated first. A non-invasive approach should also first be considered to fix mandibular fractures. When this is impractical, internal rigid fixation methods, such as osteosynthesis plates, should be used. However, it should be taken into account that in the cat mandible, dental roots and the mandibular canal structures occupy most of the volume of the mandibular body, a fact that makes it challenging to apply a plate with fixed screw positions without invading dental roots or neurovascular structures. Therefore, we propose a new prosthesis design that will provide acceptable rigid biomechanical stabilisation, but avoid dental root and neurovascular damage, when fixing simple mandibular body fractures. Future trends will include the use of better diagnostic imaging techniques, a patient-specific prosthesis design and the use of more biocompatible materials to minimise the patient’s recovery period and suffering.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2348
Author(s):  
Leon Riehakainen ◽  
Chiara Cavallini ◽  
Paolo Armanetti ◽  
Daniele Panetta ◽  
Davide Caramella ◽  
...  

Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexander Ziegler ◽  
Christina Sagorny

Abstract Background In zoology, species descriptions conventionally rely on invasive morphological techniques, frequently leading to damage of the specimens and thus only a partial understanding of their structural complexity. More recently, non-destructive imaging techniques have successfully been used to describe smaller fauna, but this approach has so far not been applied to identify or describe larger animal species. Here, we present a combination of entirely non-invasive as well as minimally invasive methods that permit taxonomic descriptions of large zoological specimens in a more comprehensive manner. Results Using the single available representative of an allegedly novel species of deep-sea cephalopod (Mollusca: Cephalopoda), digital photography, standardized external measurements, high-field magnetic resonance imaging, micro-computed tomography, and DNA barcoding were combined to gather all morphological and molecular characters relevant for a full species description. The results show that this specimen belongs to the cirrate octopod (Octopoda: Cirrata) genus Grimpoteuthis Robson, 1932. Based on the number of suckers, position of web nodules, cirrus length, presence of a radula, and various shell characters, the specimen is designated as the holotype of a new species of dumbo octopus, G. imperator sp. nov. The digital nature of the acquired data permits a seamless online deposition of raw as well as derived morphological and molecular datasets in publicly accessible repositories. Conclusions Using high-resolution, non-invasive imaging systems intended for the analysis of larger biological objects, all external as well as internal morphological character states relevant for the identification of a new megafaunal species were obtained. Potentially harmful effects on this unique deep-sea cephalopod specimen were avoided by scanning the fixed animal without admixture of a contrast agent. Additional support for the taxonomic placement of the new dumbo octopus species was obtained through DNA barcoding, further underlining the importance of combining morphological and molecular datasets for a holistic description of zoological specimens.


Sign in / Sign up

Export Citation Format

Share Document