scholarly journals Preparation of Benzothiazolyl-Decorated Nanoliposomes

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1540 ◽  
Author(s):  
Spyridon Mourtas ◽  
Panayiota Christodoulou ◽  
Pavlos Klepetsanis ◽  
Dimitrios Gatos ◽  
Kleomenis Barlos ◽  
...  

Amyloid β (Aβ) species are considered as potential targets for the development of diagnostics/therapeutics towards Alzheimer’s disease (AD). Nanoliposomes which are decorated with molecules having high affinity for Aβ species may be considered as potential carriers for AD theragnostics. Herein, benzothiazolyl (BTH) decorated nanoliposomes were prepared for the first time, after synthesis of a lipidic BTH derivative (lipid-BTH). The synthetic pathway included acylation of bis(2-aminophenyl) disulfide with palmitic acid or palmitoyl chloride and subsequent reduction of the oxidized dithiol derivative. The liberated thiols were able to cyclize to the corresponding benzothiazolyl derivatives only after acidification of the reaction mixture. Each step of the procedure was monitored by HPLC analysis in order to identify all the important parameters for the formation of the BTH-group. Finally, the optimal methodology was identified, and was applied for the synthesis of the lipid-BTH derivative. BTH-decorated nanoliposomes were then prepared and characterized for physicochemical properties (size distribution, surface charge, physical stability, and membrane integrity during incubation in presence of buffer and plasma proteins). Pegylated BTH-nanoliposomes were demonstrated to have high integrity in the presence of proteins (in comparison to non-peglated ones) justifying their further exploitation as potential theragnostic systems for AD.

2021 ◽  
pp. 213-222
Author(s):  
Dandan Wu ◽  
Xiaoxia Zhu ◽  
Lu Tan ◽  
Haiqin Zhang ◽  
Lina Sha ◽  
...  

The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of <i>Roegneria</i> C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among <i>Roegneria</i> species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of <i>R. grandis</i> (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.


2008 ◽  
Vol 74 (6) ◽  
pp. 1805-1811 ◽  
Author(s):  
N. F. Azevedo ◽  
C. Almeida ◽  
I. Fernandes ◽  
L. Cerqueira ◽  
S. Dias ◽  
...  

ABSTRACT Part of the reason for rejecting aquatic environments as possible vectors for the transmission of Helicobacter pylori has been the preference of this microorganism to inhabit the human stomach and hence use a direct oral-oral route for transmission. On the other hand, most enteric bacterial pathogens are well known for being able to use water as an environmental reservoir. In this work, we have exposed 13 strains of seven different Helicobacter spp. (both gastric and enterohepatic) to water and tracked their survival by standard plating methods and membrane integrity assessment. The influence of different plating media and temperatures and the presence of light on recovery was also assessed. There was good correlation between cultivability and membrane integrity results (Pearson's correlation coefficient = 0.916), confirming that the culture method could reliably estimate differences in survival among different Helicobacter spp. The species that survived the longest in water was H. pylori (>96 h in the dark at 25°C), whereas H. felis appeared to be the most sensitive to water (<6 h). A hierarchical cluster analysis demonstrated that there was no relationship between the enterohepatic nature of Helicobacter spp. and an increased time of survival in water. This work assesses for the first time the survival of multiple Helicobacter spp., such has H. mustelae, H. muridarum, H. felis, H. canadensis, H. pullorum, and H. canis, in water under several conditions and concludes that the roles of water in transmission between hosts are likely to be similar for all these species, whether enterohepatic or not.


2000 ◽  
Vol 345 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Matthew T. FROST ◽  
Barry HALLIWELL ◽  
Kevin P. MOORE

Measurement of nitrotyrosine in biological fluids and tissues is increasingly being used to monitor the production of reactive nitrogen species in vivo. The detection of nitrotyrosine in vivo has been reported with the use of a variety of methods including immunoassay, HPLC and GLC/MS. The validity of HPLC and immunoassays have been questioned with regard to their selectivity and sensitivity limits. In principle, the measurement of nitrotyrosine by GLC/MS permits a highly specific, highly sensitive and fully quantitative assay. The nitration of tyrosine under acidic conditions in the presence of nitrite is well documented. Derivatization for the full quantification of nitrotyrosine by using GLC/MS can lead to the artifactual nitration of tyrosine if performed under acidic conditions in the presence of nitrite. We describe a novel alkaline method for the hydrolysis and derivatization of nitrotyrosine and tyrosine, and demonstrate its applicability to the measurement of plasma concentrations of both free and protein-bound nitrotyrosine and tyrosine. A detection limit of 1 pg for nitrotyrosine and 100 pg for tyrosine has been achieved. Our method allows, for the first time, the analysis of free and protein-bound nitrotyrosine and tyrosine in biological samples. The plasma concentrations (means±S.E.M.) of free tyrosine and nitrotyrosine in eight normal subjects were 12±0.6 μg/ml and 14±0.7 ng/ml respectively. Plasma proteins contained tyrosine and nitrotyrosine at 60.7±1.7 μg/mg and 2.7±0.4 ng/mg respectively.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1991
Author(s):  
Janine Mett

Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.


2019 ◽  
Vol 12 (1) ◽  
pp. 40 ◽  
Author(s):  
Justyna Knapik-Kowalczuk ◽  
Krzysztof Chmiel ◽  
Karolina Jurkiewicz ◽  
Natália Correia ◽  
Wiesław Sawicki ◽  
...  

The purpose of this paper is to examine the physical stability as well as viscoelastic properties of the binary amorphous ezetimibe–simvastatin system. According to our knowledge, this is the first time that such an amorphous composition is prepared and investigated. The tendency toward re-crystallization of the amorphous ezetimibe–simvastatin system, at both standard storage and elevated temperature conditions, have been studied by means of X-ray diffraction (XRD). Our investigations have revealed that simvastatin remarkably improves the physical stability of ezetimibe, despite the fact that it works as a plasticizer. Pure amorphous ezetimibe, when stored at room temperature, begins to re-crystallize after 14 days after amorphization. On the other hand, the ezetimibe-simvastatin binary mixture (at the same storage conditions) is physically stable for at least 1 year. However, the devitrification of the binary amorphous composition was observed at elevated temperature conditions (T = 373 K). Therefore, we used a third compound to hinder the re-crystallization. Finally, both the physical stability as well as viscoelastic properties of the ternary systems containing different concentrations of the latter component have been thoroughly investigated.


1987 ◽  
Author(s):  
A KÖhlin ◽  
J Stenflo

In addition to γ-carboxyglutamic acid (Gla)-dependent calcium binding all of the vitamin K-dependent plasma proteins, except prothrombin, have one or two high affinity calcium binding sites that do not require the Gla residues. A common denominator among these proteins (factors IX, X, protein C, protein Z and protein S) is that they have domaines that are homologus to the epidermal growth factor (EGF) precursor. In factors VII,IX,X, protein C and in protein Z the aminoterminal of two EGF homology regions contain one residue of β-hydroxyaspartic acid (Hya) whereas in protein S the aminoterminal EGF homology region contains Hya and the three following contain one β-hydroxyasparagine residue each.In an attempt to elucidate the role of the EGF homology regions in the Gla independent calcium binding we have isolated a tryptic fragment (residue 44-138) from the light chain of human protein C. The fragment was isolated using a monoclonal antibody that recognizes a calcium ion stabilized epitope that is expressed both in intact protein C and in protein C lacking the Gla domaine.The antibody bound the isolated EGF homology region in the presence of calcium ions but not in EDTA containing buffer. A calcium ion titration showed half maximal binding at approximately 200 μM Ca2+. The metal ion induced conformational change in the isolated fragment was also studied with affinity purified rabbit antibodies against Gla domainless protein C. Antibodies that bound in the presence of calcium ions and that could be eluted with EDTA recognized the metal ion induced conformational change in the isolated EGF homology domain. Our results suggest that one or both of the EGF homology regions are involved in the Gla-independent high affinity calcium binding in the vitamin K-dependent plasma proteins.


2020 ◽  
Vol 21 (15) ◽  
pp. 5462 ◽  
Author(s):  
Francesco Tavanti ◽  
Alfonso Pedone ◽  
Maria Cristina Menziani

In this study, we compared the effects of two well-known natural compounds on the early step of the fibrillation process of amyloid-β (1–40), responsible for the formation of plaques in the brains of patients affected by Alzheimer’s disease (AD). The use of extensive replica exchange simulations up to the µs scale allowed us to characterize the inhibition activity of (–)-epigallocatechin-3-gallate (EGCG) and curcumin (CUR) on unfolded amyloid fibrils. A reduced number of β-strands, characteristic of amyloid fibrils, and an increased distance between the amino acids that are responsible for the intra- and interprotein aggregations are observed. The central core region of the amyloid-β (Aβ(1–40)) fibril is found to have a high affinity to EGCG and CUR due to the presence of hydrophobic residues. Lastly, the free binding energy computed using the Poisson Boltzmann Surface Ares suggests that EGCG is more likely to bind to unfolded Aβ(1–40) fibrils and that this molecule can be a good candidate to develop new and more effective congeners to treat AD.


Brain ◽  
2020 ◽  
Vol 143 (9) ◽  
pp. 2818-2830 ◽  
Author(s):  
Tharick A Pascoal ◽  
Joseph Therriault ◽  
Andrea L Benedet ◽  
Melissa Savard ◽  
Firoza Z Lussier ◽  
...  

Abstract Braak stages of tau neurofibrillary tangle accumulation have been incorporated in the criteria for the neuropathological diagnosis of Alzheimer’s disease. It is expected that Braak staging using brain imaging can stratify living individuals according to their individual patterns of tau deposition, which may prove crucial for clinical trials and practice. However, previous studies using the first-generation tau PET agents have shown a low sensitivity to detect tau pathology in areas corresponding to early Braak histopathological stages (∼20% of cognitively unimpaired elderly with tau deposition in regions corresponding to Braak I–II), in contrast to ∼80–90% reported in post-mortem cohorts. Here, we tested whether the novel high affinity tau tangles tracer 18F-MK-6240 can better identify individuals in the early stages of tau accumulation. To this end, we studied 301 individuals (30 cognitively unimpaired young, 138 cognitively unimpaired elderly, 67 with mild cognitive impairment, 54 with Alzheimer’s disease dementia, and 12 with frontotemporal dementia) with amyloid-β 18F-NAV4694, tau 18F-MK-6240, MRI, and clinical assessments. 18F-MK-6240 standardized uptake value ratio images were acquired at 90–110 min after the tracer injection. 18F-MK-6240 discriminated Alzheimer’s disease dementia from mild cognitive impairment and frontotemporal dementia with high accuracy (∼85–100%). 18F-MK-6240 recapitulated topographical patterns consistent with the six hierarchical stages proposed by Braak in 98% of our population. Cognition and amyloid-β status explained most of the Braak stages variance (P &lt; 0.0001, R2 = 0.75). No single region of interest standardized uptake value ratio accurately segregated individuals into the six topographic Braak stages. Sixty-eight per cent of the cognitively unimpaired elderly amyloid-β-positive and 37% of the cognitively unimpaired elderly amyloid-β-negative subjects displayed tau deposition, at least in the transentorhinal cortex (Braak I). Tau deposition solely in the transentorhinal cortex was associated with an elevated prevalence of amyloid-β, neurodegeneration, and cognitive impairment (P &lt; 0.0001). 18F-MK-6240 deposition in regions corresponding to Braak IV–VI was associated with the highest prevalence of neurodegeneration, whereas in Braak V–VI regions with the highest prevalence of cognitive impairment. Our results suggest that the hierarchical six-stage Braak model using 18F-MK-6240 imaging provides an index of early and late tau accumulation as well as disease stage in preclinical and symptomatic individuals. Tau PET Braak staging using high affinity tracers has the potential to be incorporated in the diagnosis of living patients with Alzheimer’s disease in the near future.


2004 ◽  
Vol 279 (50) ◽  
pp. 52535-52542 ◽  
Author(s):  
Matthew J. Chiocco ◽  
Laura Shapiro Kulnane ◽  
Linda Younkin ◽  
Steve Younkin ◽  
Geneviève Evin ◽  
...  

Amyloid-β (Aβ) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by β-secretase followed by γ-secretase cleavage. Identification of the primary β-secretase gene,BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Aβ metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating β-secretase expression and activity alters APP processing and Aβ metabolismin vivo. Genomic-basedBACE1transgenic mice were generated that overexpress humanBACE1mRNA and protein. The highest expressingBACE1transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing bothBACE1andAPPshow specific alterations in APP processing and age-dependent Aβ deposition. We observed elevated levels of Aβ isoforms as well as significant increases of Aβ deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for β-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation ofBACE1activity may play a significant role in AD pathogenesisin vivo.


Sign in / Sign up

Export Citation Format

Share Document