scholarly journals Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast Asia

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1972 ◽  
Author(s):  
Zaw Min Thu ◽  
Ko Ko Myo ◽  
Hnin Thanda Aung ◽  
Marco Clericuzio ◽  
Chabaco Armijos ◽  
...  

Mushrooms have a long history of uses for their medicinal and nutritional properties. They have been consumed by people for thousands of years. Edible mushrooms are collected in the wild or cultivated worldwide. Recently, mushroom extracts and their secondary metabolites have acquired considerable attention due to their biological effects, which include antioxidant, antimicrobial, anti-cancer, anti-inflammatory, anti-obesity, and immunomodulatory activities. Thus, in addition to phytochemists, nutritionists and consumers are now deeply interested in the phytochemical constituents of mushrooms, which provide beneficial effects to humans in terms of health promotion and reduction of disease-related risks. In recent years, scientific reports on the nutritional, phytochemical and pharmacological properties of mushroom have been overwhelming. However, the bioactive compounds and biological properties of wild edible mushrooms growing in Southeast Asian countries have been rarely described. In this review, the bioactive compounds isolated from 25 selected wild edible mushrooms growing in Southeast Asia have been reviewed, together with their biological activities. Phytoconstituents with antioxidant and antimicrobial activities have been highlighted. Several evidences indicate that mushrooms are good sources for natural antioxidants and antimicrobial agents

Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 843
Author(s):  
Nayely Leyva-López ◽  
Cynthia E. Lizárraga-Velázquez ◽  
Crisantema Hernández ◽  
Erika Y. Sánchez-Gutiérrez

The agroindustry generates a large amount of waste. In postharvest, food losses can reach up to 50%. This waste represents a source of contamination of soil, air, and bodies of water. This represents a problem for the environment as well as for public health. However, this waste is an important source of bioactive compounds, such as phenolic compounds, terpenes, and β-glucans, among others. Several biological activities have been attributed to these compounds; for example, antioxidant, antimicrobial, gut microbiota, and immune system modulators. These properties have been associated with improvements in health. Recently, the approach of using these bioactive compounds as food additives for aquaculture have been addressed, where it is sought that organisms, in addition to growing, preserve their health and become disease resistant. The exploitation of agro-industrial waste as a source of bioactive compounds for aquaculture has a triple objective—to provide added value to production chains, reduce pollution, and improve the well-being of organisms through nutrition. However, to make use of the waste, it is necessary to revalue them, mainly by determining their biological effects in aquaculture organisms. The composition of bioactive compounds of agro-industrial wastes, their biological properties, and their application in aquaculture will be addressed here.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1245
Author(s):  
Paola Angelini ◽  
Roberto Maria Pellegrino ◽  
Bruno Tirillini ◽  
Giancarlo Angeles Flores ◽  
Husam B. R. Alabed ◽  
...  

The genus Pleurotus (Fr.) P. Kumm (Pleurotaceae, Basidiomycota) comprises a cosmopolitan group of mushrooms highly appreciated for their nutritional value and health-promoting benefits. Despite there being many studies about the phytochemical composition of Pleurotus spp., there are very few reports dealing with the phytochemistry, antioxidant and antimicrobial activities of P. columbinus Quél. In this study, a mass spectrometry ultra-performance liquid chromatography mass spectrometry (UHPLC)-QTOF method, coupled with principal component analysis (PCA), was applied to the P. columbinus metabolome in order to investigate the influence of different agri-food residues as growth substrates for P. columbinus cultivation, on the bioactive chemical profile of fruiting bodies and evaluated their potential as antioxidants and antimicrobials. Additionally, a quantitative HPLC-DAD-MS analysis was conducted on phenolic and flavonoid compounds, that could explain, albeit partially, the observed biological effects of P. columbinus extracts. The qualitative metabolic profile identified 97 metabolites, whereas the quantitative HPLC-DAD-MS analysis confirmed the presence of phenolic and flavonoids, in the mushroom extracts, which also showed intrinsic scavenging/reducing and antimicrobial effects. The antibacterial effects were particularly evident against Escherichia coli, whereas Tricophyton and Aspergillus were the dermatophytes more sensitive to the mushroom extracts. The present study supports more in-depth investigations, aimed at evaluating the influence of growth substrate on P. columbinus antimicrobial and antioxidant properties. The extracts from P. columbinus revealed valuable sources of primary and secondary metabolites, thus suggesting potential applications in the formulation of food supplements with biological properties, above all in terms of antioxidant and antimicrobial properties.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2666 ◽  
Author(s):  
Anca Toiu ◽  
Laurian Vlase ◽  
Dan Cristian Vodnar ◽  
Ana-Maria Gheldiu ◽  
Ilioara Oniga

Solidago species are often used in traditional medicine as anti-inflammatory, diuretic, wound-healing and antimicrobial agents. Still, the bioactive compounds and biological activities of some species have not been studied. The present work aimed to investigate the polyphenolic profile and the biological properties of Solidago graminifolia L. Salisb., a poorly explored medicinal plant. The hydroalcoholic extracts from aerial parts were evaluated for total phenolic content (TPC), total flavonoid content (TFC) and the polyphenolic compounds were investigated by HPLC-MS. The antioxidant potential in vitro was determined using DPPH and FRAP assays. Antibacterial and antifungal effects were evaluated by dilution assays and MIC, MBC and MFC were calculated. The results showed that Solidago graminifolia aerial parts contain an important amount of total phenolics (192.69 mg GAE/g) and flavonoids (151.41 mg RE/g), with chlorogenic acid and quercitrin as major constituents. The hydroalcoholic extracts showed promising antioxidant and antimicrobial potential, with potent antibacterial activity against Staphylococcus aureus and important antifungal effect against Candida albicans and C. parapsilosis. The obtained results indicated that the aerial parts of Solidago graminifolia could be used as novel resource of phytochemicals in herbal preparations with antioxidant and antimicrobial activities.


2004 ◽  
Vol 69 (3) ◽  
pp. 499-510 ◽  
Author(s):  
Petra Beranová ◽  
Karel Chalupský ◽  
Gustav Entlicher

Nω-Hydroxy-L-arginine (NOHA) is a stable intermediate in NO formation from L-arginine catalyzed by NO synthase (NOS). Apparently, NOHA can be released and serve as a stable reserve NO donor (as a substrate of NOS) or transported and exert its own biological effects. It shows endothelium-dependent as well as endothelium-independent vasorelaxant activity. The latter case indicates that NOHA can be metabolized by pathways independent of NOS. These possibilities are discussed in detail. Of the available NOHA homologues homo-NOHA is a good substrate of NOS while nor-NOHA seems to be a very poor substrate of this enzyme. On the contrary, nor-NOHA exerts arginase inhibitory activity 20 times higher than NOHA whereas homo-NOHA is inactive. Detailed investigation of biological activities of NOHA and its homologues seems to be promising from the pharmacological point of view. A review with 43 references.


Planta Medica ◽  
2021 ◽  
Author(s):  
Garima Agarwal ◽  
Long-Sheng Chang ◽  
Djaja Doel Soejarto ◽  
A. Douglas Kinghorn

AbstractWith about 120 species, Aglaia is one of the largest genera of the plant family Meliaceae (the mahogany plants). It is native to the tropical rainforests of the Indo-Australian region, ranging from India and Sri Lanka eastward to Polynesia and Micronesia. Various Aglaia species have been investigated since the 1960s for their phytochemical constituents and biological properties, with the cyclopenta[b]benzofurans (rocaglates or flavaglines) being of particular interest. Phytochemists, medicinal chemists, and biologists have conducted extensive research in establishing these secondary metabolites as potential lead compounds with antineoplastic and antiviral effects, among others. The varied biological properties of rocaglates can be attributed to their unusual structures and their ability to act as inhibitors of the eukaryotic translation initiation factor 4A (eIF4A), affecting protein translation. The present review provides an update on the recently reported phytochemical constituents of Aglaia species, focusing on rocaglate derivatives. Furthermore, laboratory work performed on investigating the biological activities of these chemical constituents is also covered.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mohamed A. Abdelgawad ◽  
Mohammad M. Al-Sanea ◽  
Mohamed A. Zaki ◽  
Enas I. A. Mohamed ◽  
Shabana I. Khan ◽  
...  

Background. Benzoxazole derivatives have different biological activities. In pursuit of designing novel chemical entities with antiprotozoal and antimicrobial activities, benzoxazolyl aniline was utilized as a privileged scaffold of a series of (3-benzoxazole-2-yl) phenylamine derivatives, 3-benzoxazoloyl acetamide, and butyramide derivatives. Methods. These novel analogs were synthesized in straightforward simple chemistry without any quantitative chromatographic separations in reasonable yields. The biological evaluation of all target compounds as potential antimalarial, antileishmanial, antitrypanosomal, and antimicrobial agents was performed by various well-established cell-based methods. Results. Compounds 6d and 5a showed promising biological screening data. The amidation of 3-benzoxazolyl aniline 1 with the chloroacetyl functional group resulted in a good antimalarial activity and showed moderate inhibitory activities against leishmanial and trypanosomal spp. Moreover, chloroacetyl functionalization of benzoxazolyl aniline serves as a good early goal for constructing and synthesizing new antimicrobial and antiprotozoal agents. The molecular docking study rationalizes the relative inhibitory activity of compound 5a as an antimalarial agent with the deregulation of PfPNP activity which has emerged as a major mechanism of these targets.


Author(s):  
KOSARAJU LAHARI ◽  
RAJA SUNDARARAJAN

Objective: Isatins have emerged as antimicrobial agents due to their broad spectrum of in vitro and in vivo antimicrobial activities. In addition, thiazolidinone also reported to possess various biological activities particularly antimicrobial activity. Due to the importance, we planned to synthesize compounds with isatin functionality coupled with thiazolidinone as possible antitubercular and antimicrobial agents which could furnish better therapeutic results. Methods: In vitro Mycobacterium tuberculosis method and agar streak dilution test are used to estimate antitubercular and antimicrobial potency of title analogs, respectively. Minimum inhibitory concentration of entire title compounds was determined against all tested microorganism such as M. tuberculosis, four Gram-positive, three Gram-negative bacteria, and two fungi. Results: A series of new thiazolidinone substituted Schiff and Mannich bases of 5-nitroisatins were designed and synthesized by a multistep synthesis from isatin. Structures of synthesized compounds are characterized using Fourier-transform infrared, proton nuclear magnetic resonance, mass spectroscopy, and bases of elemental analysis. Mild to good antitubercular and antimicrobial activity was showed by synthesized 5-nitroisatin analogs. The relationship between the biological activity and the functional group variation of the tested compounds was discussed. Conclusion: 3-(4-(3-(4-Aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethyl amino)methyl)-5-nitroindolin-2-one 6 and 3-(4-(3- (2-aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethylamino)methyl)-5-nitroindolin-2-one 13 were found to be the most potent compounds of this series which might be extended as a novel class of antimicrobial agents.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 182 ◽  
Author(s):  
Edis ◽  
Haj Bloukh ◽  
Abu Sara ◽  
Bhakhoa ◽  
Rhyman ◽  
...  

Antimicrobial agents containing symmetrical triiodides complexes with halogen bonding may release free iodine molecules in a controlled manner. This happens due to interactions with the plasma membrane of microorganisms which lead to changes in the structure of the triiodide anion. To verify this hypothesis, the triiodide complex [Na(12-crown-4)2]I3 was prepared by an optimized one-pot synthesis and tested against 18 clinical isolates, 10 reference strains of pathogens and five antibiotics. The antimicrobial activities of this symmetrical triiodide complex were determined by zone of inhibition plate studies through disc- and agar-well-diffusion methods. The triiodide complex proved to be a broad spectrum microbicidal agent. The biological activities were related to the calculated partition coefficient (octanol/water). The microstructural analysis of SEM and EDS undermined the purity of the triiodide complex. The anionic structure consists of isolated, symmetrical triiodide anions [I-I-I]- with halogen bonding. Computational methods were used to calculate the energy required to release iodine from [I-I-I]- and [I-I···I]-. The halogen bonding in the triiodide ion reduces the antibacterial activities in comparison to the inhibitory actions of pure iodine but increases the long term stability of [Na(12-crown-4)2]I3.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Biyan He ◽  
Guangnan Ou ◽  
Changyi Zhou ◽  
Meihong Wang ◽  
Suyan Chen

The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs) with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.


Sign in / Sign up

Export Citation Format

Share Document