scholarly journals Dependence of Biocatalysis on D/H Ratio: Possible Fundamental Differences for High-Level Biological Taxons

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4173
Author(s):  
Igor Zlatskiy ◽  
Tatiana Pleteneva ◽  
Alexander Skripnikov ◽  
Tatiana Grebennikova ◽  
Tatiana Maksimova ◽  
...  

The kinetics of biological reactions depends on the deuterium/protium (D/H) ratio in water. In this work, we describe the kinetic model of biocatalytic reactions in living organisms depending on the D/H ratio. We show that a change in the lifetime or other characteristics of the vital activity of some organisms in response to a decrease or increase in the content of deuterium in the environment can be a sign of a difference in taxons. For animals—this is a curve with saturation according to the Gauss’s principle, for plants—it is the Poisson dependence, for bacteria a weakly saturated curve with a slight reaction to the deuterium/protium ratio toward increasing deuterium. The biological activity of the aquatic environment with reduced, elevated, and natural concentrations of deuterium is considered. The results of the study are presented in different vital indicators of some taxons: the bacteria kingdom—the colony forming units (CFU) index (Escherichia coli); animals—the activation energy of the death of ciliates (Spirostomum ambiguum), embryogenesis of fish (Brachydanio rerio); plants—germination and accumulation of trace elements Callisia fragrans L., sprouting of gametophores and peptidomics of moss Physcomitrella patens. It was found that many organisms change their metabolism and activity, responding to both high and low concentrations of deuterium in water.

2016 ◽  
Vol 835 ◽  
pp. 299-307 ◽  
Author(s):  
A. Shawabkeh ◽  
K.S. Abdel Halim ◽  
O. Al-Ayed

The pyrolysis kinetics of the Jordanian Lajjun oil shale kerogen was investigated inside a TGA reactor. Kerogen samples (extracted by mineral digestion) were non-isothermally heated at rates varying from 1 to 50°C/min under 350-550C in N2 atmosphere. Friedman, Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) models were employed to estimate the kinetic parameters at isoconversional points ranging from 0.1 to 0.9. The value of the calculated apparent activation energy (E) was found to vary with both the employed model and the conversion (x). Using the three models, the calculated increased with from 10 to 30% (low level), and then decreased with from 30 to 60% (medium level). At high level (60 to 90%), however, increased with increase using both KAS and FWO models, while it continuously dropped with increase using Friedman model. The frequency factor (k0) calculated form each model was found to linearly correlate with E. Compared to KAS and FWO models, Friedman' provided a more accurate fit to the experimental data.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2020 ◽  
Vol 786 (11) ◽  
pp. 41-46
Author(s):  
V.V. STROKOVA ◽  
◽  
V.V. NELUBOVA ◽  
M.N. SIVALNEVA ◽  
M.D. RYKUNOVA ◽  
...  

The dynamic development of urbanization contributes to an increase in emissions of industrial waste, which is the cause dysfunction of the ecosystem balance and leads to the development of biological corrosion on building materials associated with the products of the vital activity of microorganisms. In this regard, it is necessary to assess the resistance of composites to predict the durability of building structures under conditions of biological influence of microorganisms. Binder systems of various compositions were studied: cementless nanostructured binders (NB) based on quartz sand and granodiorite, gypsum, Portland cement and alumina cement. The toxicity of binders was assessed by biotesting on living organisms – cladocerans Daphnia Magna – according to the criteria of the intensity of their growth and viability. As a result, the high environmental safety of NB is substantiated, and the ranking of the studied binders according to the degree of increase in their toxicity to test objects is presented. Fungal resistance was assessed by the ability of molds for growing and reproduction on the studied samples. It was found that the most active in terms of the development of binders were representatives of the genus Aspergillus, the intensity of growing of which in all variants did not decrease below 3 points. Gypsum and NB were especially vulnerable, where the degree of fouling repeatedly reached 5 points. Even the initially biostable cement, after the aging process, lost its stability at different extent. The obtained results indicate the need to increase the resistance of composites for various purposes under conditions of biocorrosion at the stage of design and updating of regulatory documents, including tests for fungal resistance in the list of mandatory.


1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (< 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.


1980 ◽  
Vol 45 (3) ◽  
pp. 783-790 ◽  
Author(s):  
Petr Taras ◽  
Milan Pospíšil

Catalytic activity of nickel-molybdenum catalysts for methanation of carbon monoxide and hydrogen was studied by means of differential scanning calorimetry. The activity of NiMoOx systems exceeds that of carrier-free nickel if x < 2, and is conditioned by the oxidation degree of molybdenum, changing in dependence on the composition in the region Mo-MoO2. The activity of the catalysts is adversely affected by irradiation by fast neutrons, dose 28.1 Gy, or by γ rays using doses in the region 0.8-52 kGy. The system is most susceptible to irradiation in the region of low concentrations of the minor component (about 1 mol.%). The dependence of changes in catalytic activity of γ-irradiated samples on the dose exhibits a maximum in the range of 2-5 kGy. The changes in catalytic activity are stimulated by the change of reactivity of the starting mixed oxides, leading to different kinetics of their reduction and modification of their adsorption properties. The irradiation of the catalysts results in lowered concentration of the active centres for the methanation reaction.


1982 ◽  
Vol 47 (7) ◽  
pp. 1780-1786 ◽  
Author(s):  
Rostislav Kudláček ◽  
Jan Lokoč

The effect of gamma pre-irradiation of the mixed nickel-magnesium oxide catalyst on the kinetics of hydrogenation of maleic acid in the liquid phase has been studied. The changes of the hydrogenation rate are compared with the changes of the adsorbed amount of the acid and with the changes of the solution composition, activation energy, and absorbed dose of the ionizing radiation. From this comparison and from the interpretation of the experimental data it can be deduced that two types of centers can be distinguished on the surface of the catalyst under study, namely the sorption centres for the acid and hydrogen and the reaction centres.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 709
Author(s):  
Marta Jorba ◽  
Marina Pedrola ◽  
Ouldouz Ghashghaei ◽  
Rocío Herráez ◽  
Lluis Campos-Vicens ◽  
...  

This work reports a detailed characterization of the antimicrobial profile of two trimethoprim-like molecules (compounds 1a and 1b) identified in previous studies. Both molecules displayed remarkable antimicrobial activity, particularly when combined with sulfamethoxazole. In disk diffusion assays on Petri dishes, compounds 1a and 1b showed synergistic effects with colistin. Specifically, in combinations with low concentrations of colistin, very large increases in the activities of compounds 1a and 1b were determined, as demonstrated by alterations in the kinetics of bacterial growth despite only slight changes in the fractional inhibitory concentration index. The effect of colistin may be to increase the rate of antibiotic entry while reducing efflux pump activity. Compounds 1a and 1b were susceptible to extrusion by efflux pumps, whereas the inhibitor phenylalanine arginyl β-naphthylamide (PAβN) exerted effects similar to those of colistin. The interactions between the target enzyme (dihydrofolate reductase), the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH), and the studied molecules were explored using enzymology tools and computational chemistry. A model based on docking results is reported.


2021 ◽  
pp. 009524432110203
Author(s):  
Sudhir Bafna

It is often necessary to assess the effect of aging at room temperature over years/decades for hardware containing elastomeric components such as oring seals or shock isolators. In order to determine this effect, accelerated oven aging at elevated temperatures is pursued. When doing so, it is vital that the degradation mechanism still be representative of that prevalent at room temperature. This places an upper limit on the elevated oven temperature, which in turn, increases the dwell time in the oven. As a result, the oven dwell time can run into months, if not years, something that is not realistically feasible due to resource/schedule constraints in industry. Measuring activation energy (Ea) of elastomer aging by test methods such as tensile strength or elongation, compression set, modulus, oxygen consumption, etc. is expensive and time consuming. Use of kinetics of weight loss by ThermoGravimetric Analysis (TGA) using the Ozawa/Flynn/Wall method per ASTM E1641 is an attractive option (especially due to the availability of commercial instrumentation with software to make the required measurements and calculations) and is widely used. There is no fundamental scientific reason why the kinetics of weight loss at elevated temperatures should correlate to the kinetics of loss of mechanical properties over years/decades at room temperature. Ea obtained by high temperature weight loss is almost always significantly higher than that obtained by measurements of mechanical properties or oxygen consumption over extended periods at much lower temperatures. In this paper, data on five different elastomer types (butyl, nitrile, EPDM, polychloroprene and fluorocarbon) are presented to prove that point. Thus, use of Ea determined by weight loss by TGA tends to give unrealistically high values, which in turn, will lead to incorrectly high predictions of storage life at room temperature.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1176
Author(s):  
Fuqiang Zheng ◽  
Yufeng Guo ◽  
Feng Chen ◽  
Shuai Wang ◽  
Jinlai Zhang ◽  
...  

The effects of F− concentration, leaching temperature, and time on the Ti leaching from Ti-bearing electric furnace slag (TEFS) by [NH4+]-[F−] solution leaching process was investigated to reveal the leaching mechanism and kinetics of titanium. The results indicated that the Ti leaching rate obviously increased with the increase of leaching temperature and F− concentration. The kinetic equation of Ti leaching was obtained, and the activation energy was 52.30 kJ/mol. The fitting results of kinetic equations and calculated values of activation energy both indicated that the leaching rate of TEFS was controlled by surface chemical reaction. The semi-empirical kinetics equation was consistent with the real experimental results, with a correlation coefficient (R2) of 0.996. The Ti leaching rate reached 92.83% after leaching at 90 °C for 20 min with F− concentration of 14 mol/L and [NH4+]/[F−] ratio of 0.4. The leaching rates of Si, Fe, V, Mn, and Cr were 94.03%, 7.24%, 5.36%, 4.54%, and 1.73%, respectively. The Ca, Mg, and Al elements were converted to (NH4)3AlF6 and CaMg2Al2F12 in the residue, which can transform into stable oxides and fluorides after pyro-hydrolyzing and calcinating.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 331-363
Author(s):  
Eugeniy Lantcev ◽  
Aleksey Nokhrin ◽  
Nataliya Malekhonova ◽  
Maksim Boldin ◽  
Vladimir Chuvil'deev ◽  
...  

This study investigates the impact of carbon on the kinetics of the spark plasma sintering (SPS) of nano- and submicron powders WC-10wt.%Co. Carbon, in the form of graphite, was introduced into powders by mixing. The activation energy of solid-phase sintering was determined for the conditions of isothermal and continuous heating. It has been demonstrated that increasing the carbon content leads to a decrease in the fraction of η-phase particles and a shift of the shrinkage curve towards lower heating temperatures. It has been established that increasing the graphite content in nano- and submicron powders has no significant effect on the SPS activation energy for “mid-range” heating temperatures, QS(I). The value of QS(I) is close to the activation energy of grain-boundary diffusion in cobalt. It has been demonstrated that increasing the content of graphite leads to a significant decrease in the SPS activation energy, QS(II), for “higher-range” heating temperatures due to lower concentration of tungsten atoms in cobalt-based γ-phase. It has been established that the sintering kinetics of fine-grained WC-Co hard alloys is limited by the intensity of diffusion creep of cobalt (Coble creep).


Sign in / Sign up

Export Citation Format

Share Document