scholarly journals Structure of a DNA G-Quadruplex Related to Osteoporosis with a G-A Bulge Forming a Pseudo-loop

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4867
Author(s):  
Martina Lenarčič Živković ◽  
Jan Rozman ◽  
Janez Plavec

Bone remodeling is a fine-tuned process principally regulated by a cascade triggered by interaction of receptor activator of NF-κB (RANK) and RANK ligand (RANKL). Excessive activity of the RANKL gene leads to increased bone resorption and can influence the incidence of osteoporosis. Although much has been learned about the intracellular signals activated by RANKL/RANK complex, significantly less is known about the molecular mechanisms of regulation of RANKL expression. Here, we report on the structure of an unprecedented DNA G-quadruplex, well-known secondary structure-mediated gene expression regulator, formed by a G-rich sequence found in the regulatory region of a RANKL gene. Solution-state NMR structural study reveals the formation of a three-layered parallel-type G-quadruplex characterized by an unique features, including a G-A bulge. Although a guanine within a G-tract occupies syn glycosidic conformation, bulge-forming residues arrange in a pseudo-loop conformation to facilitate partial 5/6-ring stacking, typical of G-quadruplex structures with parallel G-tracts orientation. Such distinctive structural features protruding from the core of the structure can represent a novel platform for design of highly specific ligands with anti-osteoporotic function. Additionally, our study suggests that the expression of RANKL gene may be regulated by putative folding of its G-rich region into non-B-DNA structure(s).

Author(s):  
Anna Sobiepanek ◽  
Alessio Paone ◽  
Francesca Cutruzzolà ◽  
Tomasz Kobiela

AbstractMelanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.


2021 ◽  
Vol 22 (14) ◽  
pp. 7390
Author(s):  
Nicole Wesch ◽  
Frank Löhr ◽  
Natalia Rogova ◽  
Volker Dötsch ◽  
Vladimir V. Rogov

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Silvestrini ◽  
Norhan Belhaj ◽  
Lucia Comez ◽  
Yuri Gerelli ◽  
Antonino Lauria ◽  
...  

AbstractThe maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (SAXS) to investigate the structural features of SARS-CoV-2 Mpro in solution as a function of protein concentration and temperature. A detailed thermodynamic picture of the monomer-dimer equilibrium is derived, together with the temperature-dependent value of the dissociation constant. SAXS is also used to study how the Mpro dissociation process is affected by small inhibitors selected by virtual screening. We find that these inhibitors affect dimerization and enzymatic activity to a different extent and sometimes in an opposite way, likely due to the different molecular mechanisms underlying the two processes. The Mpro residues that emerge as key to optimize both dissociation and enzymatic activity inhibition are discussed.


2004 ◽  
Vol 83 (3) ◽  
pp. 241-244 ◽  
Author(s):  
A. Ohazama ◽  
J.-M. Courtney ◽  
P.T. Sharpe

Osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), and RANK ligand (RANKL) are mediators of various cellular interactions, including bone metabolism. We analyzed expression of these three genes during murine odontogenesis from epithelial thickening to cytodifferentiation stages. Opg showed expression in the thickening and bud epithelium. Expression of Opg and Rank was observed in both the internal and the external enamel epithelium as well as in the dental papilla mesenchyme. Although Rankl expression was not detected in tooth epithelium or mesenchyme, it was expressed in pre-osteogenic mesenchymal cells close to developing tooth germs. All three genes were detected in developing dentary bone at P0. The addition of exogenous OPG to explant cultures of tooth primordia produced a delay in tooth development that resulted in reduced mineralization. We propose that the spatiotemporal expression of these molecules in early tooth and bone primordia cells has a role in co-ordinating bone and tooth development.


2005 ◽  
Vol 73 (1) ◽  
pp. 342-351 ◽  
Author(s):  
G. N. Belibasakis ◽  
A. Johansson ◽  
Y. Wang ◽  
C. Chen ◽  
S. Kalfas ◽  
...  

ABSTRACT Actinobacillus actinomycetemcomitans is associated with localized aggressive periodontitis, a disease characterized by rapid loss of the alveolar bone surrounding the teeth. Receptor activator of NF-κB Ligand (RANKL) and osteoprotegerin (OPG) are two molecules that regulate osteoclast formation and bone resorption. RANKL induces osteoclast differentiation and activation, whereas OPG blocks this process by acting as a decoy receptor for RANKL. The purpose of this study was to investigate the effect of A. actinomycetemcomitans on the expression of RANKL and OPG in human gingival fibroblasts and periodontal ligament cells. RANKL mRNA expression was induced in both cell types challenged by A. actinomycetemcomitans extract, whereas OPG mRNA expression remained unaffected. Cell surface RANKL protein was also induced by A. actinomycetemcomitans, whereas there was no change in OPG protein secretion. A cytolethal distending toxin (Cdt) gene-knockout strain of A. actinomycetemcomitans did not induce RANKL expression, in contrast to its wild-type strain. Purified Cdt from Haemophilus ducreyi alone, or in combination with extract from the A. actinomycetemcomitans cdt mutant strain, induced RANKL expression. Pretreatment of A. actinomycetemcomitans wild-type extract with Cdt antiserum abolished RANKL expression. In conclusion, A. actinomycetemcomitans induces RANKL expression in periodontal connective tissue cells. Cdt is crucial for this induction and may therefore be involved in the pathological bone resorption during the process of localized aggressive periodontitis.


2018 ◽  
Vol 19 (10) ◽  
pp. 3272 ◽  
Author(s):  
Manel Benhassine ◽  
Sylvain Guérin

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B− but not in HTR23B+ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Codruţa Şoica ◽  
Mirela Voicu ◽  
Roxana Ghiulai ◽  
Cristina Dehelean ◽  
Roxana Racoviceanu ◽  
...  

Sex hormone-dependent cancers currently contribute to the high number of cancer-related deaths worldwide. The study and elucidation of the molecular mechanisms underlying the progression of these tumors was a double-edged sword, leading to the expansion and development of new treatment options, with the cost of triggering more aggressive, therapy resistant relapses. The interaction of androgen, estrogen and progesterone hormones with specific receptors (AR, ER, PR) has emerged as a key player in the development and progression of breast, ovarian, prostate and endometrium cancers. Sex hormone-dependent cancers share a common and rather unique carcinogenesis mechanism involving the active role of endogenous and exogenous sex hormones to maintain high mitotic rates and increased cell proliferation thus increasing the probability of aberrant gene occurrence and accumulation highly correlated with abnormal cell division and the occurrence of malignant phenotypes. Cancer related hormone therapy has evolved, currently being associated with the blockade of other signaling pathways often associated with carcinogenesis and tumor progression in cancers, with promising results. However, despite the established developments, there are still several shortcomings to be addressed. Triterpenes are natural occurring secondary metabolites biosynthesized by various pathways starting from squalene cyclization. Due to their versatile therapeutic potential, including the extensively researched antiproliferative effect, these compounds are most definitely a cornerstone in the research and development of new natural/semisynthetic anticancer therapies. The present work thoroughly describes the ongoing research related to the antitumor activity of triterpenes in sex hormone-dependent cancers. Also, the current review highlights both the biological activity of various triterpenoid compounds and their featured mechanisms of action correlated with important chemical structural features.


2021 ◽  
Author(s):  
Tao Jiang ◽  
Antonio MONARI ◽  
Elise Dumont ◽  
Emmanuelle Bignon

The 8-oxo-7,8-dihydroguanine, referred to as 8-oxoG, is a highly mutagenic DNA lesion that can provoke the appearance of mismatches if it escapes the DNA Damage Response. The specific recognition of its structural signature by the hOGG1 glycosylase is the first step along the Base Excision Repair pathway, that ensures the integrity of the genome by preventing the emergence of mutations. 8-oxoG formation, structural features and repair have been the matter of extensive research and more recently this active field of research expended to the more complicated case of 8-oxoG within clustered lesions. Indeed, the presence of a second lesion within 1 or 2 helix turns can dramatically impact the repair yields of 8-oxoG by glycosylases. In this work, we use mu-range molecular dynamics simulations and machine learning-based post-analysis to explore the molecular mechanisms associated with the recognition of 8-oxoG by hOGG1 when embedded in a multiple lesions site with a mismatch in 5' or 3'. We delineate the stiffening of the DNA-protein interactions upon the presence of the mismatches, and rationalize the much lower repair yields reported with a 5' mismatch by describing the perturbation of 8-oxoG structural features upon addition of an adjacent lesion.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1236
Author(s):  
Dorota Gudanis ◽  
Karolina Zielińska ◽  
Daniel Baranowski ◽  
Ryszard Kierzek ◽  
Piotr Kozłowski ◽  
...  

In this paper, a method to discriminate between two target RNA sequences that differ by one nucleotide only is presented. The method relies on the formation of alternative structures, i.e., quadruplex–duplex hybrid (QDH) and duplex with dangling ends (Dss), after hybridization of DNA or RNA G-rich oligonucleotides with target sequences containing 5′–GGGCUGG–3′ or 5′–GGGCGGG–3′ fragments. Using biophysical methods, we studied the effect of oligonucleotide types (DNA, RNA), non-nucleotide modifications (aliphatic linkers or abasic), and covalently attached G4 ligand on the ability of G-rich oligonucleotides to assemble a G-quadruplex motif. We demonstrated that all examined non-nucleotide modifications could mimic the external loops in the G-quadruplex domain of QDH structures without affecting their stability. Additionally, some modifications, in particular the presence of two abasic residues in the G-rich oligonucleotide, can induce the formation of non-canonical QDH instead of the Dss structure upon hybridization to a target sequence containing the GGGCUGG motif. Our results offer new insight into the sequential requirements for the formation of G-quadruplexes and provide important data on the effects of non-nucleotide modifications on G-quadruplex formation.


2004 ◽  
Vol 72 (3) ◽  
pp. 1706-1714 ◽  
Author(s):  
Nobuo Okahashi ◽  
Hiroaki Inaba ◽  
Ichiro Nakagawa ◽  
Taihei Yamamura ◽  
Masae Kuboniwa ◽  
...  

ABSTRACT Porphyromonas gingivalis, an important periodontal pathogen, is closely associated with inflammatory alveolar bone resorption, and several components of the organism such as lipopolysaccharides have been reported to stimulate production of cytokines that promote inflammatory bone destruction. We investigated the effect of infection with viable P. gingivalis on cytokine production by osteoblasts. Reverse transcription-PCR and real-time PCR analyses revealed that infection with P. gingivalis induced receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) mRNA expression in mouse primary osteoblasts. Production of interleukin-6 was also stimulated; however, osteoprotegerin was not. SB20350 (an inhibitor of p38 mitogen-activated protein kinase), PD98059 (an inhibitor of classic mitogen-activated protein kinase kinase, MEK1/2), wortmannin (an inhibitor of phosphatidylinositol 3 kinase), and carbobenzoxyl-leucinyl-leucinyl-leucinal (an inhibitor of NF-κB) did not prevent the RANKL expression induced by P. gingivalis. Degradation of inhibitor of NF-κB-alpha was not detectable; however, curcumin, an inhibitor of activator protein 1 (AP-1), prevented the RANKL production induced by P. gingivalis infection. Western blot analysis revealed that phosphorylation of c-Jun, a component of AP-1, occurred in the infected cells, and an analysis of c-Fos binding to an oligonucleotide containing an AP-1 consensus site also demonstrated AP-1 activation in infected osteoblasts. Infection with P. gingivalis KDP136, an isogenic deficient mutant of arginine- and lysine-specific cysteine proteinases, did not stimulate RANKL production. These results suggest that P. gingivalis infection induces RANKL expression in osteoblasts through AP-1 signaling pathways and cysteine proteases of the organism are involved in RANKL production.


Sign in / Sign up

Export Citation Format

Share Document