scholarly journals Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4963
Author(s):  
Neeraj Mandlekar ◽  
Aurélie Cayla ◽  
François Rault ◽  
Stéphane Giraud ◽  
Fabien Salaün ◽  
...  

Biobased lignin represents one of the possible materials for next-generation flame retardant additives due to its sustainability, environmental benefits and comparable efficiency to other flame retardant (FR) additives. In this context, this study presents the development of FR polyamide 11 (PA11) multifilament yarns and fabric structures containing different industrial lignins (i.e., lignosulfonate lignin (LL), and Kraft lignin (KL)) and zinc phosphinate (ZnP). The combination of ZnP and lignin (KL or LL) at different weight ratios were used to prepare flame retarded PA11 blends by melt mixing using a twin-screw extruder. These blends were transformed into continuous multifilament yarns by the melt-spinning process even at a high concentration of additives as 20 wt%. The mechanical test results showed that the combination of KL and ZnP achieved higher strength and filaments showed regularity in structure as compared to the LL and ZnP filaments. Thermogravimetric (TG) analysis showed the incorporation of lignin induces the initial decomposition (T5%) at a lower temperature; at the same time, maximum decomposition (Tmax) shifts to a higher temperature region and a higher amount of char residue is reported at the end of the test. Further, the TGA-FTIR study revealed that the ternary blends (i.e., the combination of LL or KL, ZnP, and PA11) released mainly the phosphinate compound, hydrocarbon species, and a small amount of phosphinic acid during the initial decomposition stage (T5%), while hydrocarbons, carbonyls, and phenolic compounds along with CO2 are released during main decomposition stage (Tmax). The analysis of decomposition products suggests the stronger bonds formation in the condensed phase and the obtainment of a stable char layer. Cone calorimetry exploited to study the fire behavior on sheet samples (polymer bulk) showed an improvement in flame retardant properties with increasing lignin content in blends and most enhanced results were found when 10 wt% of LL and ZnP were combined such as a reduction in heat release rate (HRR) up to 64% and total heat release (THR) up to 22%. Besides, tests carried out on knitted fabric structure showed less influence on HRR and THR but the noticeable effect on postponing the time to ignition (TTI) and reduction in the maximum average rate of heat emission (MARHE) value during combustion.


2019 ◽  
Vol 2 (1) ◽  
pp. 19-29
Author(s):  
Hao Wu ◽  
Rogelio Ortiz ◽  
Joseph H. Koo

AbstractIn the previous study, flame retardant (FR) polyamide 11 (PA11) nanocomposites formulations designed for selective laser sintering (SLS)were prepared and characterized. The SEBS-g-MA elastomer successfully improved the material’s ductility. Although the nonhalogenated FR additives and montmorillonite (MMT) nanoclay successfully decreased the heat release capacity (HRC) and peak heat release rate (pHRR) as characterized by microscale combustion calorimeter (MCC). None of the rubber toughened formulations achieved UL 94 V0 rating, which is a bench mark for many FR polymer applications. As part two of this study, we explored the synergism between two nanoparticles, nanoclay and multi-walled carbon nanotubes (MWNTs), to see whether better FR properties can be achieved. TEM micrographs indicate that both nanoclay and MWNTs achieved high level of dispersion. Flammability results showed that all formulations achieved UL 94 V0 rating, which is a significant improvement from the previous formulations without MWNTs. Char morphology characterization indicated that a solid carbonaceous char layer was reinforced by nanoclay and MWNTs.



Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1776 ◽  
Author(s):  
Liancong Wang ◽  
Benjamin Tawiah ◽  
Yongqian Shi ◽  
Suncheng Cai ◽  
Xiaohui Rao ◽  
...  

The extemporaneous combustion of coal remains a major threat to safety in coal mines because such fire accidents result in casualties and significant property loss, as well as serious environmental pollution. This work proposed the fabrication of flame-retardant rigid polyurethane foam (RPUF) containing expandable graphite as char expander/sealant with melamine phosphosphate and 2-carboxyethyl (phenyl)phosphinic acid as char inducer and radical trapping agents. The as-prepared RPUF successfully inhibited coal combustion by forming thermally stable high graphitic content expandable intumescent char sealing over the coal. The RPUF achieved UL-94 V-0 rating in addition to significant reductions in peak heat release, total heat release, and CO and CO2 yields. The external and the internal residual char structure was studied by X-ray photoelectron spectra, Raman spectroscopy, and real-time Fourier transform infrared spectra techniques, and a flame-retardant mode of action has been proposed. This work provides important insight into a facile fabrication of highly efficient and economical flame-retardant RPUF to inhibit the spontaneous combustion of coal.



2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.



Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1286
Author(s):  
Kyung-Who Choi ◽  
Jun-Woo Kim ◽  
Tae-Soon Kwon ◽  
Seok-Won Kang ◽  
Jung-Il Song ◽  
...  

The use of halogen-based materials has been regulated since toxic substances are released during combustion. In this study, polyurethane foam was coated with cationic starch (CS) and montmorillonite (MMT) nano-clay using a spray-assisted layer-by-layer (LbL) assembly to develop an eco-friendly, high-performance flame-retardant coating agent. The thickness of the CS/MMT coating layer was confirmed to have increased uniformly as the layers were stacked. Likewise, a cone calorimetry test confirmed that the heat release rate and total heat release of the coated foam decreased by about 1/2, and a flame test showed improved fire retardancy based on the analysis of combustion speed, flame size, and residues of the LbL-coated foam. More importantly, an additional cone calorimeter test was performed after conducting more than 1000 compressions to assess the durability of the flame-retardant coating layer when applied in real life, confirming the durability of the LbL coating by the lasting flame retardancy.



2021 ◽  
Vol 2 (1) ◽  
pp. 24-48
Author(s):  
Quoc-Bao Nguyen ◽  
Henri Vahabi ◽  
Agustín Rios de Anda ◽  
Davy-Louis Versace ◽  
Valérie Langlois ◽  
...  

This study has developed novel fully bio-based resorcinol epoxy resin–diatomite composites by a green two-stage process based on the living character of the cationic polymerization. This process comprises the photoinitiation and subsequently the thermal dark curing, enabling the obtaining of thick and non-transparent epoxy-diatomite composites without any solvent and amine-based hardeners. The effects of the diatomite content and the compacting pressure on microstructural, thermal, mechanical, acoustic properties, as well as the flame behavior of such composites have been thoroughly investigated. Towards the development of sound absorbing and flame-retardant construction materials, a compromise among mechanical, acoustic and flame-retardant properties was considered. Consequently, the composite obtained with 50 wt.% diatomite and 3.9 MPa compacting pressure is considered the optimal composite in the present work. Such composite exhibits the enhanced flexural modulus of 2.9 MPa, a satisfying sound absorption performance at low frequencies with Modified Sound Absorption Average (MSAA) of 0.08 (for a sample thickness of only 5 mm), and an outstanding flame retardancy behavior with the peak of heat release rate (pHRR) of 109 W/g and the total heat release of 5 kJ/g in the pyrolysis combustion flow calorimeter (PCFC) analysis.



Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3588
Author(s):  
Jiayi Chen ◽  
Yansong Liu ◽  
Jiayue Zhang ◽  
Yuanlin Ren ◽  
Xiaohui Liu

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.



2011 ◽  
Vol 175-176 ◽  
pp. 465-468 ◽  
Author(s):  
Lei Shi ◽  
Hua Wu Liu ◽  
Ping Xu ◽  
Dang Feng Zhao

Plain weave fabrics of polyacrylonitrile pre-oxidation yarns (PANOF) were prepared by small rapier loom. The flame retardation properties, mechanical properties and wear behaviors of PANOF plain weave fabrics were tested. The limiting oxygen index (LOI) of these PANOF plain weave fabric samples was 31%, which meets the criterion of flame-retardant fabrics. These fabrics neither melt nor shrunk when left in flame for a short period of time and the fabric structures were well maintained. Compared with flammable polyacrylonitrile fabrics, the polyacrylonitrile pre-oxidation fabrics exhibited excellent flame retardation properties, with satisfactory mechanical properties and comfortable handle.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chenkai Zhu ◽  
Lei Nie ◽  
Xiaofei Yan ◽  
Jiawei Li ◽  
Dongming Qi

Abstract In this work, the structure of composite was designed as Core Stack and Surface Stack, which was treated with the expandable graphite (EG) and metal oxides such as iron oxide (IO), hydroxyapatite (HA), and aluminum tri-hydroxide (ATH). The mechanical performance of composites was characterized via flexural performance and interlaminar shear strength analysis. The flame retardance and smoke suppression of composite was explored in detail by LOI, UL-94, and cone calorimeter test. The findings presented that flexural properties of composites were observed to decrease due to delamination of surface stack, whilst no significant effect on interlaminar shear strength. In comparison with control composite, the loading of metal oxide into composite Surface Stack led to the reduction of peak heat release rate, total heat release, and fire growth index effectively. Moreover, the remarkable decrease in total smoke production could be observed due to the addition of iron oxide and the flame retardant mechanism was discussed. This study was the preliminary exploration of composite with flame retardant design which could be potential solution to improve flame retardancy and smoke suppression of composite with better mechanical structure preservation.



Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 13 ◽  
Author(s):  
Rosica Mincheva ◽  
Hazar Guemiza ◽  
Chaimaa Hidan ◽  
Sébastien Moins ◽  
Olivier Coulembier ◽  
...  

In this study, a highly efficient flame-retardant bioplastic poly(lactide) was developed by covalently incorporating flame-retardant DOPO, that is, 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide. To that end, a three-step strategy that combines the catalyzed ring-opening polymerization (ROP) of L,L-lactide (L,L-LA) in bulk from a pre-synthesized DOPO-diamine initiator, followed by bulk chain-coupling reaction by reactive extrusion of the so-obtained phosphorylated polylactide (PLA) oligomers (DOPO-PLA) with hexamethylene diisocyanate (HDI), is described. The flame retardancy of the phosphorylated PLA (DOPO-PLA-PU) was investigated by mass loss cone calorimetry and UL-94 tests. As compared with a commercially available PLA matrix, phosphorylated PLA shows superior flame-retardant properties, that is, (i) significant reduction of both the peak of heat release rate (pHRR) and total heat release (THR) by 35% and 36%, respectively, and (ii) V0 classification at UL-94 test. Comparisons between simple physical DOPO-diamine/PLA blends and a DOPO-PLA-PU material were also performed. The results evidenced the superior flame-retardant behavior of phosphorylated PLA obtained by a reactive pathway.



2018 ◽  
Vol 31 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Shuang Yang ◽  
Yefa Hu ◽  
Qiaoxin Zhang

In this article, a phosphorus–nitrogen-containing flame retardant (DOPO-T) was successfully synthesized by nucleophilic substitution reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and cyanuric chloride. The chemical structure of DOPO-T was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (NMR) and phosphorous-31 NMR, and elemental analysis. DOPO-T was then blended with diglycidyl ether of bisphenol-A to prepare flame-retardant epoxy resins. Thermal properties, flame retardancy, and combustion behavior of the cured epoxy resins were evaluated by differential scanning calorimetry, thermogravimetric analysis, limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The results indicated that the glass transition temperature ( Tg) and temperature at 5% weight loss of epoxy resin (EP)/DOPO-T thermosets were gradually decreased with the increasing content of DOPO-T. DOPO-T catalyzed the decomposition of EP matrix in advance. The flame-retardant performance of EP thermosets was significantly enhanced with the addition of DOPO-T. EP/DOPO-T-0.9 sample had an LOI value of 36.2% and achieved UL94 V-1 rating. In addition, the average of heat release rate, peak of heat release rate, average of effective heat of combustion, and total heat release (THR) of EP/DOPO-T-0.9 sample were decreased by 32%, 48%, 23%, and 31%, respectively, compared with the neat EP sample. Impressively, EP/DOPO-T thermosets acquired excellent flame retardancy under low loading of flame retardant.



Sign in / Sign up

Export Citation Format

Share Document