scholarly journals Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 5
Author(s):  
Rafael Agustín Burgos ◽  
Pablo Alarcón ◽  
John Quiroga ◽  
Carolina Manosalva ◽  
Juan Hancke

Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Tian ◽  
Yafang Zhang ◽  
Yu Wang ◽  
Yunxi Chen ◽  
Weiping Fan ◽  
...  

Molecular hydrogen (H2) is a colorless and odorless gas. Studies have shown that H2 inhalation has the therapeutic effects in many animal studies and clinical trials, and its application is recommended in the novel coronavirus pneumonia treatment guidelines in China recently. H2 has a relatively small molecular mass, which helps it quickly spread and penetrate cell membranes to exert a wide range of biological effects. It may play a role in the treatment and prevention of a variety of acute and chronic inflammatory diseases, such as acute pancreatitis, sepsis, respiratory disease, ischemia reperfusion injury diseases, autoimmunity diseases, etc.. H2 is primarily administered via inhalation, drinking H2-rich water, or injection of H2 saline. It may participate in the anti-inflammatory and antioxidant activity (mitochondrial energy metabolism), immune system regulation, and cell death (apoptosis, autophagy, and pyroptosis) through annihilating excess reactive oxygen species production and modulating nuclear transcription factor. However, the underlying mechanism of H2 has not yet been fully revealed. Owing to its safety and potential efficacy, H2 has a promising potential for clinical use against many diseases. This review will demonstrate the role of H2 in antioxidative, anti-inflammatory, and antiapoptotic effects and its underlying mechanism, particularly in coronavirus disease-2019 (COVID-19), providing strategies for the medical application of H2 for various diseases.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Armin Mooranian ◽  
Thomas Foster ◽  
Corina M Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
...  

Introduction: Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. Methods: Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. Results and Conclusion: Capsules’ morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jiah Ning Tan ◽  
Shamin Mohd Saffian ◽  
Fhataheya Buang ◽  
Zakiah Jubri ◽  
Ibrahim Jantan ◽  
...  

Background:Gynura species have been used traditionally to treat various ailments, such as fever, pain, and to control blood glucose level. This systematic review critically discusses studies regarding Gynura species that exhibited antioxidant and anti-inflammatory effects, thus providing perspectives and instructions for future research of the plants as a potential source of new dietary supplements or medicinal agents.Methods: A literature search from internet databases of PubMed, Scopus, Science Direct, e-theses Online Service, and ProQuest was carried out using a combination of keywords such as “Gynura,” “antioxidant,” “anti-inflammatory,” or other related words. Research articles were included in this study if they were experimental (in vitro and in vivo) or clinical studies on the antioxidant or anti-inflammatory effects of Gynura species and if they were articles published in English.Results: Altogether, 27 studies on antioxidant and anti-inflammatory effects of Gynura species were selected. The antioxidant effects of Gynura species were manifested by inhibition of reactive oxygen species production and lipid peroxidation, modulation of glutathione-related parameters, and enzymatic antioxidant production or activities. The anti-inflammatory effects of Gynura species were through the modulation of inflammatory cytokine production, inhibition of prostaglandin E2 and nitric oxide production, cellular inflammatory-related parameters, and inflammation in animal models. The potential anti-inflammatory signaling pathways modulated by Gynura species are glycogen synthase kinase-3, nuclear factor erythroid 2-related factor 2, PPARγ, MAPK, NF-κB, and PI3K/Akt. However, most reports on antioxidant and anti-inflammatory effects of the plants were on crude extracts, and the chemical constituents contributing to bioactivities were not clearly understood. There is a variation in quality of studies in terms of design, conduct, and interpretation, and in-depth studies on the underlying mechanisms involved in antioxidant and anti-inflammatory effects of the plants are in demand. Moreover, there is limited clinical study on antioxidant and anti-inflammatory effects of Gynura species.Conclusion: This review highlighted antioxidant and anti-inflammatory effects of genus Gynura and supported their traditional uses to treat oxidative stress and inflammatory-related diseases. This review is expected to catalyze further studies on genus Gynura. However, extensive preclinical data need to be generated from toxicity and pharmacokinetic studies before clinical studies can be pursued for their development into clinical medicines to treat oxidative stress and inflammatory conditions.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xinhai Jiang ◽  
Yining Li ◽  
Weizhi Wang ◽  
Xiaowan Han ◽  
Jiangxue Han ◽  
...  

Phenethyl isothiocyanate is widely present in cruciferous vegetables with multiple biological effects. Here we reported the antiatherogenic effects and the underlying mechanisms of JC-5411 (Phenethyl isothiocyanate formulation) in vitro and in vivo. Luciferase reporter assay showed that JC-5411 increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE). JC-5411 treatment significantly increased the protein expression of Nrf2 and its downstream target gene hemeoxygenase 1 (HO-1) in liver of apolipoprotein E deficient (ApoE−/−) mice. Importantly, JC-5411 treatment significantly reduced atherosclerotic plaque area in both en face aorta and aortic sinus when compared with model group in WD induced ApoE−/− mice. JC-5411 obviously decreased proinflammatory factors’ levels in serum of ApoE−/− mice, LPS stimulated macrophages and TNFα induced endothelial cells, respectively. JC-5411 significantly decreased the levels of total cholesterol (TC) and triglyceride (TG) in both serum and liver of ApoE−/− mice and hyperlipidemic golden hamsters. Mechanism studies showed that JC-5411 exerted anti-inflammatory effect through activating Nrf2 signaling and inhibiting NF-κB and NLRP3 inflammasome pathway. JC-5411 exerted regulating lipid metabolism effect through increasing cholesterol transfer proteins (ABCA1 and LDLR) expression, regulating fatty acids synthesis related genes (p-ACC, SCD1 and FAS), and increasing fatty acids β-oxidation (CPT1A) in vivo. Furthermore, JC-5411 treatment had a favorable antioxidant effect in ApoE−/− mice by increasing the antioxidant related genes expression. Taken together, we conclude that JC-5411 as a Nrf2 activator has anti-inflammatory, rebalancing lipid metabolism, and antioxidant effects, which makes it as a potential therapeutic agent against atherosclerosis.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Sara Assadpour ◽  
Mohammad Reza Shiran ◽  
Peyman Asadi ◽  
Javad Akhtari ◽  
Amirhossein Sahebkar

Sumatriptan (ST) is a commonly prescribed drug for treating migraine. The efficiency of several routes of ST administration has been investigated. Recently, the intranasal route with different delivery systems has gained interest owing to its fast-acting and effectiveness. The present study is aimed at reviewing the available studies on novel delivery systems for intranasal ST administration. The oral route of ST administration is common but complicated with some problems. Gastroparesis in patients with migraine may reduce the absorption and effectiveness of ST upon oral use. Furthermore, the gastrointestinal (GI) system and hepatic metabolism can alter the pharmacokinetics and clinical effects of ST. The bioavailability of conventional nasal liquids is low due to the deposition of a large fraction of the delivered dose of a drug in the nasal cavity. Several delivery systems have been utilized in a wide range of preclinical and clinical studies to enhance the bioavailability of ST. The beneficial effects of the dry nasal powder of ST (AVP-825) have been proven in clinical studies. Moreover, other delivery systems based on microemulsions, microspheres, and nanoparticles have been introduced, and their higher bioavailability and efficacy were demonstrated in preclinical studies. Based on the extant findings, harnessing novel delivery systems can improve the bioavailability of ST and enhance its effectiveness against migraine attacks. However, further clinical studies are needed to approve the safety and efficacy of employing such systems in humans.


Homeopathy ◽  
2021 ◽  
Author(s):  
Raj Kumar Manchanda ◽  
Meeta Gupta ◽  
Ankit Gupta ◽  
Robbert van Haselen

Abstract Background Signaling molecules such as cytokines and interleukins are key mediators for the immune response in responding to internal or external stimuli. Homeopathically prepared signaling molecules have been used therapeutically for about five decades. However, these types of products are not available in many countries and their usage by homoeopaths is also infrequent. The aim of this scoping review is to map the available pre-clinical and clinical data related to the therapeutic use of homeopathically prepared signaling molecules. Methods We conducted a scoping review of clinical and pre-clinical studies of therapeutically used signaling molecules that have been prepared in accordance with an officially recognized homeopathic pharmacopoeia. Articles in peer-reviewed journals reporting original clinical or pre-clinical research of homeopathically prepared signaling molecules such as interleukins, cytokines, antibodies, growth factors, neuropeptides and hormones, were eligible. Non-English language papers were excluded, unless we were able to obtain an English translation. An appraisal of eligible studies took place by rating the direction of the outcomes on a five-point scale. The quality of the papers was not systematically assessed. Results Twenty-eight eligible papers, reporting findings for four different manufacturers' products, were identified and reviewed. Seventeen papers reported pre-clinical studies, and 11 reported clinical studies (six experimental, five observational). A wide range of signaling molecules, as well as normal T-cell expressed specific nucleic acids, were used. A majority of the products (21 of 28) contained two or more signaling molecules. The most common clinical indications were psoriasis, vitiligo, rheumatoid arthritis, respiratory allergies, polycystic ovary syndrome, and herpes. The direction of the outcomes was positive in 26 papers and unclear in two papers. Conclusion This scoping review found that there is a body of evidence on the use of homeopathically prepared signaling molecules. From a homeopathy perspective, these substances appear to have therapeutic potential. Further steps to explore this potential are warranted.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Silvia Menendez Cepero

Ozone has been used as a therapeutical agent for the treatment of different diseases and beneficial effects have been observed. However, ozone biological effects remain controversial due to the scarce knowledge of its biochemical and pharmacodynamic mechanisms. Taking into account that ozone therapy is gathering more interest, day by day, and it has been used in apparently nonrelated diseases with beneficial effects, the National Center for Scientific Research (Havana, Cuba) in collaboration with different research centers and health institutions have studied the ozone toxicology and its pharmacological actions as well as its biochemical mechanisms. The most remarkable experiences, in preclinical and clinical studies, developed in Cuba during the last 30 years, in order to prove unequivocally ozone therapy validity, are presented in this lecture. On the basis of the oxidant properties of ozone, we postulate that controlled ozone administration (named as ozone oxidative pre-/postconditioning mechanism) is able to promote a slight and transient oxidative stress which in turn re-establishes the signalling pathways which have been lost in pathological conditions, preserving the cellular redox balance (increasing antioxidant endogenous system), mitochondrial function as well as the regulation of transcription factors and the modulation of the immunological system. It is evident that membrane-associated ozone peroxides, 4-hydroxialkenals, superoxide anion, nitric oxide, among others, are going to play an important role in cellular signals as well as in the pathology of different diseases. Regulation of these biomolecules by ozone preconditioning has been demonstrated in several preclinical and clinical studies as ischaemia-reperfusion phenomenom, parkinson, senile dementia, disk herniation, retinitis pigmentosa, ischemic cardiopathy, arterial insufficiencies, diabetes, osteoarthritis, asthma, vestibulocochlear syndrome, among others. Nitric oxide modulation, as well as the increase in A1 adenosine receptors achieved with this therapy has an important role in brain blood flux, in the formation of memory, in the release of neurotransmitters and in the inflammatory processes. Ozone therapy seems to induce a simultaneous resuscitation of functions that had gone wrong, reactivating and re-equilibrating physiological activities. This lecture contributes to clarify the ozone mechanism of action and its different pharmacology effects. It is concluded that ozone therapy can be useful in the treatment of several diseases, either as adjuvant of ortodox medicine or taking part positively in those where conventional therapy has had no success, all this with a common purpose: to favour the patients and contribute to a better quality of life.


2017 ◽  
Vol 86 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Jan Hošek ◽  
Kristýna Šebrlová ◽  
Petra Kaucká ◽  
Ondřej Peš ◽  
Eva Táborská

Quaternary benzophenanthridine alkaloids are known to have a wide range of biological effects, including antimicrobial, antifungal, anti-inflammatory, and antitumour activities. However, only sanguinarine and chelerythrine have been studied intensively. The aim of this study was to evaluate the anti-inflammatory potential of the five minor quaternary benzophenanthridine alkaloids sanguilutine, sanguirubine, chelirubine, chelilutine, and macarpine in vitro and to compare them with more thoroughly studied sanguinarine and chelerythrine. Before making cell-based assays, the cytotoxicity of the alkaloids was evaluated. The anti-inflammatory potential of the chosen alkaloids was evaluated as for their ability to modulate the lipopolysaccharide-induced secretion of tumour necrosis factor α (TNF-α) in the macrophage-like cell line THP-1. The cyclooxygenase (COX)-1 and COX-2 inhibitory activities were also measured. The results indicate that the presence of a methylenedioxy ring attached at carbon (C)7-C8 is important for reducing the secretion of TNF-α. Interestingly, this effect did not show a simple dependence on concentration. The selected alkaloids showed little or no anti-COX activity. The results obtained from the present experiments may provide additional information useful in understanding the structure-to-activity relationship of the quaternary benzophenanthridine alkaloids. The anti-inflammatory potential and the cytotoxic effect are driven by the presence of a methylenedioxy ring attached at C7-C8 and C2-C3, respectively.


Inventions ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 29 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Muhammad Liaquat Raza ◽  
Mamona Nazir

Iridoids belong to a family of monoterpenoids comprising the cyclopentan[c]-pyran system; this class of compounds offers a wide range of biological effects, namely antileishmanial, anticancer, antiplasmodial, and anti-inflammatory potency. To date, a large number of biologically active iridoid derivatives have been reported from various plant families, including Rubiaceae, Plantaginaceae, Scrophulariaceae, and Verbenaceae. Furthermore, iridoids have the potential to form conjugates with other anticancer, antidiabetic, antileishmanial, and antimalarial drugs which synergistically have the potential to increase their effects. Additionally, future research should focus on the synthesis of halo analogs as well as preparing homo dimers or heterodimers of iridoids, since these might quite conceivably possess an increased bioactivity.


Sign in / Sign up

Export Citation Format

Share Document