scholarly journals Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Tian ◽  
Yafang Zhang ◽  
Yu Wang ◽  
Yunxi Chen ◽  
Weiping Fan ◽  
...  

Molecular hydrogen (H2) is a colorless and odorless gas. Studies have shown that H2 inhalation has the therapeutic effects in many animal studies and clinical trials, and its application is recommended in the novel coronavirus pneumonia treatment guidelines in China recently. H2 has a relatively small molecular mass, which helps it quickly spread and penetrate cell membranes to exert a wide range of biological effects. It may play a role in the treatment and prevention of a variety of acute and chronic inflammatory diseases, such as acute pancreatitis, sepsis, respiratory disease, ischemia reperfusion injury diseases, autoimmunity diseases, etc.. H2 is primarily administered via inhalation, drinking H2-rich water, or injection of H2 saline. It may participate in the anti-inflammatory and antioxidant activity (mitochondrial energy metabolism), immune system regulation, and cell death (apoptosis, autophagy, and pyroptosis) through annihilating excess reactive oxygen species production and modulating nuclear transcription factor. However, the underlying mechanism of H2 has not yet been fully revealed. Owing to its safety and potential efficacy, H2 has a promising potential for clinical use against many diseases. This review will demonstrate the role of H2 in antioxidative, anti-inflammatory, and antiapoptotic effects and its underlying mechanism, particularly in coronavirus disease-2019 (COVID-19), providing strategies for the medical application of H2 for various diseases.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 5
Author(s):  
Rafael Agustín Burgos ◽  
Pablo Alarcón ◽  
John Quiroga ◽  
Carolina Manosalva ◽  
Juan Hancke

Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nitirut Nernpermpisooth ◽  
Charlotte Sarre ◽  
Christian Barrere ◽  
Rafaël Contreras ◽  
Patricia Luz-Crawford ◽  
...  

Myocardial infarction ranks first for the mortality worldwide. Because the adult heart is unable to regenerate, fibrosis develops to compensate for the loss of contractile tissue after infarction, leading to cardiac remodeling and heart failure. Adult mesenchymal stem cells (MSC) regenerative properties, as well as their safety and efficacy, have been demonstrated in preclinical models. However, in clinical trials, their beneficial effects are controversial. In an experimental model of arthritis, we have previously shown that PPARβ/δ deficiency enhanced the therapeutic effect of MSC. The aim of the present study was to compare the therapeutic effects of wild-type MSC (MSC) and MSC deficient for PPARβ/δ (KO MSC) perfused in an ex vivo mouse model of ischemia-reperfusion (IR) injury. For this purpose, hearts from C57BL/6J mice were subjected ex vivo to 30 min ischemia followed by 1-h reperfusion. MSC and KO MSC were injected into the Langendorff system during reperfusion. After 1 h of reperfusion, the TTC method was used to assess infarct size. Coronary effluents collected in basal condition (before ischemia) and after ischemia at 1 h of reperfusion were analyzed for their cytokine profiles. The dose-response curve for the cardioprotection was established ex vivo using different doses of MSC (3.105, 6.105, and 24.105 cells/heart) and the dose of 6.105 MSC was found to be the optimal concentration. We showed that the cardioprotective effect of MSC was PPARβ/δ-dependent since it was lost using KO MSC. Moreover, cytokine profiling of the coronary effluents collected in the eluates after 60 min of reperfusion revealed that MSC treatment decreases CXCL1 chemokine and interleukin-6 release compared with untreated hearts. This anti-inflammatory effect of MSC was also observed when hearts were treated with PPARβ/δ-deficient MSC. In conclusion, our study revealed that the acute cardioprotective properties of MSC in an ex vivo model of IR injury, assessed by a decreased infarct size at 1 h of reperfusion, are PPARβ/δ-dependent but not related to their anti-inflammatory effects.


2020 ◽  
Vol 26 ◽  
Author(s):  
Ikuroh Ohsawa

: Because multicellular organisms do not have hydrogenase, H2 has been considered to be biologically inactive in these species, and enterobacteria to be largely responsible for the oxidation of H2 taken into the body. However, we showed previously that inhalation of H2 markedly suppresses brain injury induced by focal ischemia–reperfusion by buffering oxidative stress. Although the reaction constant of H2 with hydroxyl radical in aqueous solution is two to three orders of magnitude lower than that of conventional antioxidants, we showed that hydroxyl radical generated by the Fenton reaction reacts with H2 at room temperature without a catalyst. Suppression of hydroxyl radical by H2 has been applied in ophthalmic surgery. However, many of the anti-inflammatory and other therapeutic effects of H2 cannot be completely explained by its ability to scavenge reactive oxygen species. H2 administration is protective in several disease models, and preculture in the presence of H2 suppresses oxidative stress-induced cell death. Specifically, H2 administration induces mitochondrial oxidative stress and activates Nrf2; this phenomenon, in which mild mitochondrial stress leaves the cell less susceptible to subsequent perturbations, is called mitohormesis. Based on these findings, we conclude that crosstalk between antioxidative stress pathways and the anti-inflammatory response is the most important molecular mechanism involved in the protective function of H2 , and that regulation of the immune system underlies H2 efficacy. For further medical applications of H2 , it will be necessary to identify the biomolecule on which H2 first acts.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Zhebo Liu ◽  
Bo Tao ◽  
Suzhen Fan ◽  
Yong Pu ◽  
Hao Xia ◽  
...  

MicroRNA-145 (miR-145) has been shown to play an important role in cardiovascular system disorders; however, the underlying mechanism is not completely understood. The purpose of this study was aimed at elucidating the cardioprotective effects of miR-145 against myocardial ischemia/reperfusion (I/R) injury. We established a rat myocardial I/R model with 45 min left anterior descending coronary artery (LAD) occlusion and 2 h reperfusion. The levels of myocardial enzymes, apoptotic, inflammatory, and oxidative indices were determined. The arrhythmia score was assessed by programmed electrical stimulation (PES). Quantitative real-time PCR and western blot were applied to evaluate the expression levels of miR-145 and related target proteins, respectively. I/R injury decreased the expression of miR-145; however, upregulated miR-145 markedly reduced the elevation of ST segment, decreased corrected QT (QTc) intervals, and attenuated I/R-induced electrophysiological instability. Furthermore, miR-145 suppressed myocardium apoptotic, inflammatory, and oxidative response as well as the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), ryanodine receptor2 (RyR2 Ser2814), apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinases (JNK), and nuclear translocation of nuclear factor kappa-B (NF-κB) p65. In summary, overexpression of miR-145 alleviates I/R-induced myocardial electrophysiological instability and apoptotic and inflammatory response via inhibition of the CaMKII-mediated ASK1 antiapoptotic pathway and NF-κB p65 anti-inflammatory pathways.


1996 ◽  
Vol 16 (01) ◽  
pp. 56-59
Author(s):  
D. J. Tyrrell ◽  
C. P. Page

SummaryEvidence continues to accumulate that the pleiotropic nature of heparin (beyond its anticoagulant potency) includes anti-inflammatory activities at a number of levels. It is clear that drugs exploiting these anti-inflammatory activities of heparin may offer exciting new therapeutic applications to the treatment of a wide range of inflammatory diseases.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Armin Mooranian ◽  
Thomas Foster ◽  
Corina M Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
...  

Introduction: Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. Methods: Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. Results and Conclusion: Capsules’ morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Awadhesh K. Arya ◽  
Kurt Hu ◽  
Lalita Subedi ◽  
Tieluo Li ◽  
Bingren Hu

AbstractResuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving maneuver for the management of lethal torso hemorrhage. However, its prolonged use leads to distal organ ischemia–reperfusion injury (IRI) and systemic inflammatory response syndrome (SIRS). The objective of this study is to investigate the blood-based biomarkers of IRI and SIRS and the efficacy of direct intestinal cooling in the prevention of IRI and SIRS. A rat lethal hemorrhage model was produced by bleeding 50% of the total blood volume. A balloon catheter was inserted into the aorta for the implementation of REBOA. A novel TransRectal Intra-Colon (TRIC) device was placed in the descending colon and activated from 10 min after the bleeding to maintain the intra-colon temperature at 37 °C (TRIC37°C group) or 12 °C (TRIC12°C group) for 270 min. The upper body temperature was maintained at as close to 37 °C as possible in both groups. Blood samples were collected before hemorrhage and after REBOA. The organ injury biomarkers and inflammatory cytokines were evaluated by ELISA method. Blood based organ injury biomarkers (endotoxin, creatinine, AST, FABP1/L-FABP, cardiac troponin I, and FABP2/I-FABP) were all drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated these increased organ injury biomarkers. Plasma levels of pro-inflammatory cytokines TNF-α, IL-1b, and IL-17F were also drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated the pro-inflammatory cytokines. In contrast, TRIC12°C significantly upregulated the levels of anti-inflammatory cytokines IL-4 and IL-10 after REBOA. Amazingly, the mortality rate was 100% in TRIC37°C group whereas 0% in TRIC12°C group after REBOA. Directly cooling the intestine offered exceptional protection of the abdominal organs from IRI and SIRS, switched from a harmful pro-inflammatory to a reparative anti-inflammatory response, and mitigated mortality in the rat model of REBOA management of lethal hemorrhage.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Xuejun Wang ◽  
Erin J Terpstra ◽  
Eduardo Callegari ◽  
Chengjun Hu ◽  
Hanming Zhang ◽  
...  

Cardiac proteasome functional insufficiency is implicated in a large subset of heart disease and has been experimentally demonstrated to play an essential role in cardiac proteotoxicity, including desmin-related cardiomyopathy and myocardial ischemia-reperfusion (I-R) injury. Pharmacological inhibition of phosphodiesterase 5 (PDE5) via sildenafil for example, which can stabilize cGMP and thereby increase cGMP-dependent protein kinase (PKG) activity, is consistently reported to protect against I-R injury; however, the underlying mechanism is not fully understood. We have recently discovered that PKG activation enhances proteasomal degradation of misfolded proteins (Ranek, et al. Circulation 2013), prompting us to hypothesize that proteasome-priming may contribute to cardioprotection-induced by PDE5 inhibition. Here we used a cardiomyocyte-restricted proteasome inhibition transgenic mouse line (Tg) and non-Tg (Ntg) littermates to interrogate the action of sildenafil on I-R injury created by left anterior descending artery (LAD) ligation (30 min) and release (24 hr). Sildenafil was administered 30 min before LAD ligation. Results showed that (1) the 26S proteasome activity of the Ntg I-R hearts was significantly elevated by sildenafil but this elevation was blocked in the Tg line; (2) the infarct size reduction by sildenafil treatment in Ntg mice was completely abolished in the Tg mice with the same treatment; and (3) systolic and diastolic function impairment after I/R was markedly attenuated in sildenafil-treated Ntg mice, but not in the sildenafil-treated Tg mice. Additionally, immunoprecipitation assays show that PKG interacted with the proteasome in cultured cardiomyocytes, and this interaction appeared to be augmented by sildenafil treatment. Moreover, in vitro incubation of active PKG with purified human 26S proteasomes increased proteasome peptidase activities and the phosphorylation at specific serine residues of a 19S proteasome subunit as revealed by “gel-free” nano-LC-MS/MS. We conclude that active PKG directly interacts with, phosphorylates, and increases the activities of, the proteasome and that proteasome priming mediates to cardioprotection of PDE5 inhibition against I-R injury.


Sign in / Sign up

Export Citation Format

Share Document