scholarly journals UV Protective, Antioxidant, Antibacterial and Compostable Polylactic Acid Composites Containing Pristine and Chemically Modified Lignin Nanoparticles

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 126
Author(s):  
Ema Cavallo ◽  
Xiaoyan He ◽  
Francesca Luzi ◽  
Franco Dominici ◽  
Patricia Cerrutti ◽  
...  

Polylactic acid (PLA) films containing 1 wt % and 3 wt % of lignin nanoparticles (pristine (LNP), chemically modified with citric acid (caLNP) and acetylated (aLNP)) were prepared by extrusion and characterized in terms of their overall performance as food packaging materials. Morphological, mechanical, thermal, UV–Vis barrier, antioxidant and antibacterial properties were assayed; appropriate migration values in food simulants and disintegration in simulated composting conditions were also verified. The results obtained indicated that all lignin nanoparticles succeeded in conferring UV-blocking, antioxidant and antibacterial properties to the PLA films, especially at the higher filler loadings assayed. Chemical modification of the fillers partially reduced the UV protection and the antioxidant properties of the resulting composites, but it induced better nanoparticles dispersion, reduced aggregates size, enhanced ductility and improved aesthetic quality of the films through reduction of the characteristic dark color of lignin. Migration tests and disintegration assays of the nanocomposites in simulated composting conditions indicated that, irrespectively of their formulation, the multifunctional nanocomposite films prepared behaved similarly to neat PLA.

Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 280
Author(s):  
Rui Lu ◽  
Dur E. Sameen ◽  
Wen Qin ◽  
Dingtao Wu ◽  
Jianwu Dai ◽  
...  

Selenium is a natural element which exists in the human body and plays an important role in metabolism. Along with this, selenium also possesses antibacterial and antioxidant properties. Using selenium microparticles (SeMPs) in food packaging films is exceptional. In this experiment, a solution casting method was used to make film. For this purpose, we used polylactic acid (PLA) as a substrate for the formation of a film membrane while SeMPs were added with certain ratios to attain antibacterial and antioxidant properties. The effects of SeMPs on the PLA film and the value of SeMPs in food packaging film production were investigated. The effects of the SeMPs contents on the features of the film, such as its mechanical property, solubility, swelling capacity, water vapor permeability, antioxidant activity, and the antibacterial activity of the composite membrane against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains, were studied. The results manifest that the PLA/SeMPs films showed higher water resistance, UV resistance, antioxidant activity, and antibacterial activity than pure PLA film. When the concentration of SeMPs was 1.5 wt%, the composite membrane showed the best comprehensive performance. Although the tensile strength and elongation at break of the membrane were slightly reduced by the addition of SeMPs, the results show that PLA/SeMPs films are still suitable for food packaging and would be a very promising material for food packaging.


2014 ◽  
Vol 605 ◽  
pp. 428-431 ◽  
Author(s):  
Rudolf Kiefer ◽  
Rong Jer Lee ◽  
Rauno Temmer ◽  
Tarmo Tamm ◽  
Alvo Aabloo

Chitosan as a natural biopolymer has applicable functionality for wound healing due to the biocompatible and antibacterial properties. Here we investigate what combined biomimetic functionality can be obtained by forming composites of chitosan and conducting polymers such as polypyrrole (PPy) or poly (3,4-ethylenedioythiophene) (PEDOT). Chemical polymerization shows direct interaction between the chitosan matrix and PPy; such materials can be dissolved as stable suspensions, coated (printed or spin coated) on fabrics or fibers with antioxidant properties of renewable activity. PEDOT and chitosan composites have shown antibacterial properties against staphylococcus aureus. The novel biocompatible chitosan conducting polymer composites will give new direction for obtaining smart materials with diverse functionality, applicable as sensors, food packaging or ion-selective membranes.


Holzforschung ◽  
2020 ◽  
Vol 74 (5) ◽  
pp. 523-528 ◽  
Author(s):  
Li Fan ◽  
Hui Zhang ◽  
Mengxi Gao ◽  
Meng Zhang ◽  
Pengtao Liu ◽  
...  

AbstractWith the increasing application of polyvinyl alcohol (PVA) films in the field of food packaging, it is important to improve its mechanical and antibacterial properties. This paper focuses on the preparation of PVA nanocomposite films and how their properties are affected by a silver-loaded nanocellulose solution. Cellulose nanocrystals (CNCs) were used as both the carrier and the dispersant of silver nanoparticles (AgNPs) prepared using glucose as the reducing agent. Ag+ was stabilized by the many hydroxyl groups located in the CNCs, and then the Ag+ was reduced to AgNPs in situ. After addition of silver-loaded nanocellulose, the tensile strength of the CNC-PVA-AgNP films increased from 47 MPa to 73 MPa, and the nanocomposite films displayed reduced moisture absorption and good antibacterial properties.


2020 ◽  
Vol 40 (10) ◽  
pp. 848-858
Author(s):  
Fatima Zohra Yakdoumi ◽  
Assia Siham Hadj-Hamou

AbstractThe main objective of this study was to assess the effectiveness of TiO2-Al2O3 nano-mixture used as filler in improving packaging films performance. Polylactic acid/titanium dioxide (PLA/TiO2), polylactic acid/alumina (PLA/Al2O3) and polylactic acid/TiO2-Al2O3 (PLA/TiO2-Al2O3) nanocomposite films were successfully prepared via melt mixing process and thoroughly characterized by FTIR spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties such as heat resistant, barrier, mechanical and antimicrobial properties, required for food packaging have also been investigated. As compared to the neat PLA film, the developed PLA nanocomposites have displayed superior properties particularly the PLA/ TiO2-Al2O3 nanocomposite film. This resulted material has showed a 22 °C increase in its thermal stability versus 14 and 2 °C in the cases of PLA/TiO2 and PLA/Al2O3 respectively, and a 54% reduction of its water vapor permeability in comparison with 47% for PLA/TiO2 and 39% for PLA/Al2O3. In addition, the PLA/TiO2-Al2O3 had a significant enhancement of its mechanical properties. Its Young modulus increased by 102% unlike 23.60% for the PLA/TiO2 and 44.66% for the PLA/Al2O3. It was also noticed that this nanocomposite film demonstrated stronger antibacterial activity than the two others. The bacterial growth inhibition effect of TiO2-Al2O3 nano-mixture against Pseudomonas aeruginosa and Escherichia coli bacteria was more effective than that of its two constituents.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4019
Author(s):  
Teuku Rihayat ◽  
Agung Efriyo Hadi ◽  
Nurhanifa Aidy ◽  
Aida Safitri ◽  
Januar Parlaungan Siregar ◽  
...  

This study aims to produce and investigate the potential of biodegradable Polylactic Acid (PLA)-based composites mixed with chitosan and Turmeric Essential Oil (TEO) as an anti-microbial biomaterial. PLA has good barrier properties for moisture, so it is suitable for use as a raw material for making packaging and is included in the GRAS (Generally Recognized As Safe). Chitosan is a non-toxic and antibacterial cationic polysaccharide that needs to be improved in its ability to fight microbes. TEO must be added to increase antibacterial properties due to a large number of hydroxyl (-OH) and carbonyl functional groups. The samples were prepared in three different variations: 2 g of chitosan, 0 mL TEO and 0 mL glycerol (Biofilm 1), 3 g of chitosan, 0.3 mL TEO and 0.5 mL of glycerol (Biofilm 2), and 4 g of chitosan, 0.3 of TEO and 0.5 mL of glycerol (Biofilm 3). The final product was characterized by its functional group through Fourier transform infrared (FTIR); the functional groups contained by the addition of TEO are C-H, C=O, O-H, and N-H with the extraction method, and as indicated by the emergence of a wide band at 3503 cm−1, turmeric essential oil interacts with the polymer matrix by creating intermolecular hydrogen bonds between their terminal hydroxyl group and the carbonyl groups of the ester moieties of both PLA and Chitosan. Thermogravimetric analysis (TGA) of PLA as biofilms, the maximum temperature of a biofilm was observed at 315.74 °C in the variation of 4 g chitosan, 0.3 mL TEO, and 0.5 mL glycerol (Biofilm 3). Morphological conditions analyzed under scanning electron microscopy (SEM) showed that the addition of TEO inside the chitosan interlayer bound chitosan molecules to produce solid particles. Chitosan and TEO showed increased anti-bacterial activity in the anti-microbial test. Furthermore, after 12 days of exposure to open areas, the biofilms generated were able to resist S. aureus and E. coli bacteria.


2022 ◽  
Vol 23 (1) ◽  
pp. 396-411
Author(s):  
Salina Budin ◽  
Normariah Che Maideen ◽  
Mei Hyie Koay ◽  
Hamid Yusoff ◽  
Halim Ghafar

Major environmental problems resulting from non-degradable components of plastic wastes have awakened great attention to bioplastic as an alternative material. Among various bioplastic materials, polylactic acid (PLA) is recognised as a promising material especially as a food packaging material. The development of PLA composites using various fillers has extensively been in focus in order to preserve the high quality, safety, and extended shelf-life of packed food. Among the interesting fillers is Syzygium aromaticum (SA). SA, also known as clove, has biological activities such as antibacterial, antifungal, insecticidal, and antioxidant properties. This work investigated the effects of SA filler on the degradations of virgin PLA (VPLA) and recycled PLA (RPLA). The VPLA/SA composites and RPLA/SA composites were prepared using the solvent casting method. The content of SA filler varied in the range of 0 to 20 wt%. The composites were aged in outdoor environment and soil burial. The results revealed that the degradation rate was increased with the increase of SA filler in both ageing environments. After 10 weeks of ageing in the outdoor environment, the weight loss of VPLA/SA composites and RPLA/SA composites containing 20 wt% of SA were 7.7% and 12.8% respectively. Whereas in soil burial, the weight loss of VPLA/SA composites and RPLA/SA composites with similar SA content were 25.6% and 38.3% respectively. The degradation rate was observed to be more rapid in the soil burial as compared to the outdoor environment. Comparably, RPLA and RPLA/SA composites experienced higher degradation rates than VPLA and VPLA/SA composites. The degradation rate was consistent with scanning electron microscope (SEM) images which observed the formation of holes, cavities, cleavages, and grooves on the surfaces of the samples. Thermogravimetric analysis (TGA) results on aged samples showed that VPLA/SA composites and RPLA/SA composites that had aged in soil burial decomposed at lower temperatures. The shortening of degradation time of the VPLA/SA composites and RPLA/SA composites could increase their potential to be used as food packaging materials. ABSTRAK: Masalah utama terhadap alam sekitar yang disebabkan oleh sisa plastik yang sukar terurai, telah menarik perhatian terhadap bioplastik sebagai bahan alternatif. Di antara pelbagai jenis bahan bioplastik sedia ada, asid polilaktik(PLA) dilihat sebagai bahan yang paling sesuai terutamanya sebagai bahan pembungkusan makanan. Perkembangan di dalam penghasilan komposit asid polilaktik yang ditambah dengan pelbagai bahan pengisi telah menjadi fokus terutamanya bagi tujuan meningkatkan kualiti, kesegaran dan jangka hayat makanan. Salah satu pengisi yang mendapat perhatian adalah Syzygium aromaticum (SA). SA yang juga dikenali sebagai bunga cengkeh mempunyai aktiviti biologi, seperti sifat antibakteria, antijamur, racun serangga dan antioksidan yang tinggi. Didalam kajian ini, siasatan terhadap kesan penambahan SA terhadap penguraian PLA asal (VPLA) dan PLA kitar semula (VPLA). Komposit VPLA/SA dan komposit RPLA/SA disediakan dengan menggunakan kaedah pelarutan pelarut. Kandungan pengisi SA adalah didalam julat 0 – 20% mengikut berat. Komposit tersebut dibiarkan menua didalam persekitaran luaran dan didalam tanah. Keputusan kajian mendapati bahawa kadar penguraian semakin meningkat dengan penambahan peratus berat bahan pengisi SA setelah melalui penuaan didalam kedua-dua persekitaran. Setelah penuaan selama10 minggu di dalam persekiran luaran, pengurang berat komposit VPLA/SA dan komposit RPLA/SA yang mengandungi 20 wt% SA adalah 7.7% dan 12.8%. Manakala bagi penuaan didalam tanah, pengurangan berat komposit VPLA/SA dan komposit RPLA/SA dengan kandungan SA yang sama masing-masing adalah 25.6% dan 38.3%. Kadar penguraian diperhatikan lebih cepat bagi penuan didalam tanah dibandingkan dengan penuaan didalam persekitaran luaran.  Disamping itu, RPLA dan komposit RPLA/SA mengalami kadar penguraian yang lebih tinggi berbanding VPLA dan komposit VPLA/SA. Kadar penguraian adalah konsisten dengan imej yang dihasilkan oleh imbasan mikroskop elektron (SEM) dimana dapat dilihat pembentukan lubang, rongga, pembelahan dan alur di permukaan sampel. Hasil analisis termogravimetri (TGA) terhadap sampel yang telah dituakan menunjukkan bahawa komposit VPLA/SA dan komposit RPLA/SA yang melalui penuaan didalam tanah terurai pada suhu yang lebih rendah. Tempoh penguraian komposit VPLA/SA dan komposit RPLA/SA yang lebih pendek ini meningkatkan potensi penggunaannya komposit ini sebagai bahan pembungkusan makanan.


2021 ◽  
Vol 55 (5-6) ◽  
pp. 649-658
Author(s):  
SALAH A. A. MOHAMED ◽  
AHMED SALAMA ◽  
MOHAMED EL-SAKHAWY ◽  
ABDELMAGEED M. OTHMAN

There is a growing demand to develop biodegradable composite films, with enhanced water resistance, antimicrobial activity, high mechanical properties and low oxygen permeability. In the present study, chitosan/hydroxypropyl methylcellulose (HPMC) films reinforced with cellulose nanocrystal (CNC) and containing menthol oil were prepared for food packaging applications. Menthol oil was selected due to its antibacterial properties, as well as relatively low cost and wide availability. CNC was prepared from bagasse via acid degradation. The bio-composites were prepared through a simple and versatile solution mixing and casting method. The morphology, chemical composition, water absorption, mechanical properties and antibacterial activity of the films were investigated. FTIR spectra were used to evaluate the film structure in terms of the interactions between components. Data showed that the addition of CNC improved the mechanical properties of the formed films and the menthol oil enhanced their antibacterial properties. HPMC and HPMC/CNC reduced the water absorption of the pure chitosan membrane from 70% to 22% and 9-11% by weight, respectively, which makes these constituents a good alternative for producing packaging.


2020 ◽  
Vol 21 (5) ◽  
pp. 1637
Author(s):  
Shiyuan Fang ◽  
Weiqiang Qiu ◽  
Jun Mei ◽  
Jing Xie

Carvacrol is a natural compound known to be a highly effective antibacterial; however, it is a hydrophobic molecule, which is a limitation to its use within food packaging. Flaxseed gum (FG) films containing different contents of carvacrol (C) were produced by a film-casting method with sonication. The effects of sonication power and time on the properties of the FG-C films were investigated by measuring the film thickness, mechanical properties, contact angle, opacity, water vapor permeability (WVP), water sorption isotherm, Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry (DSC), antibacterial and antioxidant activities, and microstructure. The results showed that sonication power and time had significant effects on mechanical and barrier properties, film opacity, and degradability (p < 0.05). The tensile strength (TS) and elongation at break (EB) values exhibited an obvious improvement after sonication, and FG-0.5C-6030 had the lowest TS (33.40 MPa) and EB (4.46%) values. FG-C films formed a denser structure and the contact angle was improved as a result of sonication, which improved the integration of carvacrol into the FG matrix. In terms of microstructure, sonication resulted in a homogeneous and continuous crosssection of FG-C films, and regular surface and cross-sectional images were obtained through the highest acoustic intensity and longest time treatment. The FG films incorporated with carvacrol displayed antibacterial properties against Staphylococcus aureus, Vibrio parahaemolyticus, Shewanella putrefaciens, and Pseudomonas fluorescens, as well as increased antioxidant properties, and sonication was proven to enhance both of them.


Sign in / Sign up

Export Citation Format

Share Document