scholarly journals Insights into the Antimicrobial Activity of Hydrated Cobaltmolybdate Doped with Copper

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1267
Author(s):  
Layane A. L. Silva ◽  
André A. L. Silva ◽  
Maria A. S. Rios ◽  
Manoel P. Brito ◽  
Alyne R. Araújo ◽  
...  

Molybdates are biocidal materials that can be useful in coating surfaces that are susceptible to contamination and the spread of microorganisms. The aim of this work was to investigate the effects of copper doping of hydrated cobalt molybdate, synthesized by the co-precipitation method, on its antibacterial activity and to elucidate the structural and morphological changes caused by the dopant in the material. The synthesized materials were characterized by PXRD, Fourier Transformed Infrared (FTIR), thermogravimetric analysis/differential scanning calorimetry (TG/DSC), and SEM-Energy Dispersive Spectroscopy (SEM-EDS). The antibacterial response of the materials was verified using the Minimum Inhibitory Concentration (MIC) employing the broth microdilution method. The size of the CoMoO4·1.03H2O microparticles gradually increased as the percentage of copper increased, decreasing the energy that is needed to promote the transition from the hydrated to the beta phase and changing the color of material. CoMoO4·1.03H2O obtained better bactericidal performance against the tested strains of Staphylococcus aureus (gram-positive) than Escherichia coli (gram-negative). However, an interesting point was that the use of copper as a doping agent for hydrated cobalt molybdate caused an increase of MIC value in the presence of E. coli and S. aureus strains. The study demonstrates the need for caution in the use of copper as a doping material in biocidal matrices, such as cobalt molybdate.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4021
Author(s):  
Andrés Esteban Cerón Cerón Cortés ◽  
Anja Dosen ◽  
Victoria L. Blair ◽  
Michel B. Johnson ◽  
Mary Anne White ◽  
...  

Materials from theA2M3O12 family are known for their extensive chemical versatility while preserving the polyhedral-corner-shared orthorhombic crystal system, as well as for their consequent unusual thermal expansion, varying from negative and near-zero to slightly positive. The rarest are near-zero thermal expansion materials, which are of paramount importance in thermal shock resistance applications. Ceramic materials with chemistry Al2−xInxW3O12 (x = 0.2–1.0) were synthesized using a modified reverse-strike co-precipitation method and prepared into solid specimens using traditional ceramic sintering. The resulting materials were characterized by X-ray powder diffraction (ambient and in situ high temperatures), differential scanning calorimetry and dilatometry to delineate thermal expansion, phase transitions and crystal structures. It was found that the x = 0.2 composition had the lowest thermal expansion, 1.88 × 10−6 K−1, which was still higher than the end member Al2W3O12 for the chemical series. Furthermore, the AlInW3O12 was monoclinic phase at room temperature and transformed to the orthorhombic form at ca. 200 °C, in contrast with previous reports. Interestingly, the x = 0.2, x = 0.4 and x = 0.7 materials did not exhibit the expected orthorhombic-to-monoclinic phase transition as observed for the other compositions, and hence did not follow the expected Vegard-like relationship associated with the electronegativity rule. Overall, compositions within the Al2−xInxW3O12 family should not be considered candidates for high thermal shock applications that would require near-zero thermal expansion properties.


2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


2020 ◽  
Author(s):  
Baoguang Liu ◽  
Xiaoling Yuan ◽  
Yiheng Chen ◽  
Xiaoshen Li ◽  
Ming Bai ◽  
...  

Abstract Background The spread of ESBLs-producing bacteria has been strikingly rapid in many regions of the world and it causes therapeutic difficulties in everyday practice. The aims of this study were to investigate the prevalence and susceptibilities of ESBLs-producing Escherichia coli isolates from healthy Tibetan yaks in China, to evaluate the activity of drug combinations on ESBLs-producing E. coli isolates. Methods From July 2018 to August 2019, a total of 750 nasal swab samples were tested for the presence of E. coli and ESBLs-producing strains. The MICs of 11 antimicrobial agents alone and combinations with sulbactam, EDTA or sulbactam-EDTA against 240 ESBLs-producing E.coli strains were determined by the broth microdilution method. Results Overall, 59.87% (n = 449) of the samples were positive for E. coli, 240 (53.45%) of 449 E. coli isolates were confirmed to be ESBLs-producing. The addition of sulbactam to the third generation cephalosporins, amikacin and fosfomycin for all isolates resulted in low MICs, increasing the level of susceptibility from 0, 0 and 0% to 50 ~ 87.5, 4.2 and 100% respectively. The addition of EDTA to fluoroquinolones, doxycycline, florfenicol, amikacin and fosfomycin, showed improved activities and resulted in low MICs, increasing the level of susceptibility from 0, 0, 8.3, 0 and 0% to 4.2 ~ 29.2, 33.3, 33.3, 66.7 and 45.8%, respectively. All other antibacterials (except fluoroquinolones, doxycycline and florfenicol), when combined with sulbactam-EDTA, were found to be more active than combinations only with sulbactam or with EDTA against most of isolates, with lower MIC50s and MIC90s. Conclusion In conclusion, ESBLs-producing E. coli isolates were widespread in healthy Tibetan yaks in China. ESBLs-producing E. coli isolates exhibited varying degrees of multidrug resistance. This study these findings suggested that sulbactam can enhance activity of β-lactams and some non-β-lactams of antimicrobial agents and had a synergistic effects with EDTA in improving activities of some families of antimicrobials.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 152 ◽  
Author(s):  
Ramona Iseppi ◽  
Alessandro Di Cerbo ◽  
Patrizia Messi ◽  
Carla Sabia

Background: We investigated the virulence factors, genes, antibiotic resistance patterns, and genotypes (VRE and ESBL/AmpC) production in Enterococci and Enterobacteriaceae strains isolated from fecal samples of humans, dogs, and cats. Methods: A total of 100 fecal samples from 50 humans, 25 dogs, and 25 cats were used in the study. MICs of nine antimicrobials were determined using the broth microdilution method. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (VRE and ESBL/AmpC) and virulence genes both in Enterococcus species, such as cytolysin (cylA, cylB, cylM), aggregation substance (agg), gelatinase (gelE), enterococcal surface protein (esp), cell wall adhesins (efaAfs and efaAfm), and in Enterobacteriaceae, such as cytolysin (hemolysin) and gelatinase production (afa, cdt, cnf1, hlyA, iutA, papC, sfa). Results: Enterococcus faecium was the most prevalent species in humans and cats, whereas Enterococcus faecalis was the species isolated in the remaining samples. A total of 200 Enterobacteriaceae strains were also detected, mainly from humans, and Escherichia coli was the most frequently isolated species in all types of samples. In the Enterococcus spp, the highest percentages of resistance for ampicillin, amoxicillin/clavulanate, erythromycin, tetracycline, ciprofloxacin, teicoplanin, and vancomycin were detected in cat isolates (41.6%, 52.8%, 38.9%, 23.6%, 62.5%, 20.8%, and 23.6% respectively), and in E. coli, a higher rate of resistance to cefotaxime and ceftazidime emerged in cat and dog samples, if compared with humans (75.4% and 66.0%, 80.0% and 71.4%, and 32.0% and 27.2%, respectively). Regarding the total number of enterococci, 5% and 3.4% of the strains were vancomycin and teicoplanin resistant, and the vancomycin resistance (van A) gene has been detected in all samples by PCR amplification. All the Enterobacteriaceae strains were confirmed as ESBL producers by PCR and sequencing, and the most frequent ESBL genes in E. coli strains from humans and pet samples were blaCTX-M-1 and blaCTX-M-15. Conclusions: Our results provide evidence that one or more virulence factors were present in both genera, underlining again the ability of pet strains to act as pathogens.


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1680
Author(s):  
Sara Štumpf ◽  
Gregor Hostnik ◽  
Mateja Primožič ◽  
Maja Leitgeb ◽  
Urban Bren

The current study examines the effect of tannins and tannin extracts on the lag phase duration, growth rate, and generation time of Escherichia coli. Effects of castalagin, vescalagin, gallic acid, Colistizer, tannic acid as well as chestnut, mimosa, and quebracho extracts were determined on E. coli’s growth phases using the broth microdilution method and obtained by turbidimetric measurements. E. coli responds to the stress caused by the investigated antimicrobial agents with reduced growth rates, longer generation times, and extended lag phases. Prolongation of the lag phase was relatively small at low tannin concentrations, while it became more pronounced at concentrations above half the MIC. Moreover, for the first time, it was observed that lag time extensions follow a strict exponential relationship with increasing tannin concentrations. This feature is very likely a direct consequence of the tannin complexation of certain essential ions from the growth medium, making them unavailable to E. coli for its growth.


2009 ◽  
Vol 20 (suppl a) ◽  
pp. 20A-30A
Author(s):  
George G Zhanel ◽  
Mel DeCorby ◽  
Kim A Nichol ◽  
Aleksandra Wierzbowski ◽  
Patricia J Baudry ◽  
...  

BACKGROUND: Antimicrobial resistance is a growing problem in North American hospitals as well as hospitals worldwide. OBJECTIVES: To assess the antimicrobial susceptibility patterns of commonly used agents against the 20 most common organisms isolated from Canadian hospitals. METHODS: In total, 7881 isolates were obtained between January 1, 2007, and December 31, 2007, from 12 hospitals across Canada as part of the Canadian Ward Surveillance Study (CANWARD 2007). Of these, 6685 isolates (20 most common organisms) obtained from bacteremic, urinary, respiratory and wound specimens underwent antimicrobial susceptibility testing. Susceptibility testing was assessed using the Clinical and Laboratory Standards Institute broth microdilution method. RESULTS: The most active (based upon minimum inhibitory concentration [MIC] data only) agents against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) were dalbavancin, daptomycin, linezolid, telavancin, tigecycline and vancomycin, with MICs required to inhibit the growth of 90% of organisms (MIC90) of 0.06 μg/mL and 0.06 μg/mL, 0.25 μg/mL and 0.25 μg/mL, 4 μg/mL and 1 μg/mL, 0.25 μg/mL and 0.25 μg/mL, 0.5 μg/mL and 0.25 μg/mL, and 1 μg/mL and 2 μg/mL, respectively. The most active agents against vancomycin-resistant enterococci were daptomycin, linezolid and tigecycline with MIC90sof 2 μg/mL, 4 μg/mL and 0.12 μg/mL, respectively. The most active agents againstEscherichia coliwere amikacin, cefepime, ertapenem, meropenem, piperacillin-tazobactam and tigecycline with MIC90sof 4 μg/mL, 2 μg/mL, 0.06 μg/mL or less, 0.12 μg/mL or less, 4 μg/mL and 1 μg/mL, respectively. The most active agents against extendedspectrum beta-lactamase-producing E coli were ertapenem, meropenem and tigecycline with MIC90sof 0.12 μg/mL or less, 0.12 μg/mL or less and 1 μg/mL, respectively. The most active agents againstPseudomonas aeruginosawere amikacin, cefepime, meropenem and piperacillin-tazobactam with MIC90sof 32 μg/mL, 32 μg/mL, 8 μg/mL and 64 μg/mL, respectively. The most active agents againstStenotrophomonas maltophiliawere tigecycline and trimethoprimsulfamethoxazole and levofloxacin with MIC90sof 8 μg/mL, 8 μg/mL and 8 μg/mL, respectively. The most active agents againstAcinetobacter baumanniiwere amikacin, fluoroquinolones (eg, levofloxacin), meropenem, and tigecycline with MIC90sof 2 μg/mL or less, 1 μg/mL, 4 μg/mL and 2 μg/mL, respectively. CONCLUSIONS: The most active agents versus Gram-positive cocci from Canadian hospitals were vancomycin, linezolid, daptomycin, tigecycline, dalbavancin and telavancin. The most active agents versus Gram-negative bacilli from Canadian hospitals were amikacin, cefepime, ertapenem (notP aeruginosa), meropenem, piperacillintazobactam and tigecycline (notP aeruginosa). Colistin (polymyxin E) was very active againstP aeruginosaandA baumannii.


2016 ◽  
Vol 855 ◽  
pp. 47-53
Author(s):  
Ampa Jimtaisong ◽  
Nisakorn Saewan

Inclusion complex of β-cyclodextrin (β-CD) and Plai (Zingiber cassumunar) oil was prepared using a simple co-precipitation method at β-CD to Plai oil in different ratios. The inclusion complexes were characterized using Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The FT-IR absorption bands of inclusion complex at 3600-3200 cm-1 were broader and shifted toward lower frequencies compared with that of pure β-CD (3359 cm-1). DSC of the inclusion complexes showed two endothermic peaks shifted to lower temperatures (90-100°C and 295-300°C) compared to that of β-CD. The different physicochemical characteristic could be an indication of an embedded guest molecule in the β-CD cavities in the inclusion complex preparation.


2020 ◽  
Vol 83 (7) ◽  
pp. 1261-1267
Author(s):  
TING LIU ◽  
JINGFAN WANG ◽  
XIAOMAN GONG ◽  
XIAOXIA WU ◽  
LIU LIU ◽  
...  

ABSTRACT The purpose of the present study was to determine the bioactive compounds in rosemary essential oil (REO) and tea tree essential oil (TEO) and to investigate their antibacterial and antibiofilm activities against Staphylococcus aureus and Escherichia coli in vitro. The MIC and MBC assays were performed to assess the antibacterial activity of these two EOs against S. aureus and E. coli with the broth microdilution method. A crystal violet assay was used to ascertain the effects of EOs on the biofilm formation of the test strains, and a tetrazolium bromide (MTT) assay was used to measure the level of inactivation of mature biofilms by EOs. Gas chromatography–mass spectrometry revealed 15 compounds in REO and 27 compounds in TEO, representing 97.78 and 98.13% of the total EO, respectively. Eucalyptol and α-pinene were found in high concentrations in REO, and the two major compounds in TEO were 4-terpineol and terpinolene. The MICs of REO for the two S. aureus and E. coli test strains were both 0.5 mg/mL, and the MICs of TEO for the two strains were both 0.25 mg/mL. Therefore, these EOs can significantly inhibit the formation of biofilms and induced morphological biofilm changes, as verified by scanning electron microscopy. Both EOs had destructive effects on the mature biofilm of the two test strains. TEO was more inhibitory than REO for biofilm formation by the two test strains. HIGHLIGHTS


2017 ◽  
Vol 5 (1) ◽  
pp. 52-57
Author(s):  
Awadhesh Kumar ◽  
◽  
Nagaraj Hegde ◽  

The plant secondary metabolites play a very important role during the microbial attack. These metabolites (essential oils/ alkaloids/ glycosides/ tannins etc.) can be extracted from plant and many of these plant products can be used as a potential source for new antibacterial agents. In thepresent investigation, the extract extracted from dried leaves of Mikania micrantha by using Soxlet apparatus. The efficacy of extract was analyzed by broth microdilution method of CLSI against the E. coli, K. pneumoniae, P. vulgaris and S. dysenteriae in in-vitro condition. The result showed the minimum inhibitory concentration 0.317mg/ ml against E. coli; 0.429mg/ ml against K. pneumoniae; 1.16mg/ml against P. vulgaris and 0.437mg/ ml against S. dysenteriae; however, IC50 value was recorded as 0.162, 0.211, 0.670 and 0.214, respectively. The finding showed that the extract of M. micrantha having a good antibacterial activity. Its toxicity persisted heavy inoculums density, thermo stability and long shelf life.


Sign in / Sign up

Export Citation Format

Share Document